Skip to main content
Log in

Study of the Alkyl Chain Length on Laccase Stability and Enzymatic Kinetic with Imidazolium Ionic Liquids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The activity and stability of laccase and their kinetic mechanisms in water soluble ionic liquids (ILs): 1-butyl-3-methyl imidazolium chloride [C4mim][Cl], 1-octyl-3-methyl imidazolium chloride [C8mim][Cl], and 1-decyl-3-methyl imidazolium chloride [C10mim][Cl] were investigated. The results show that an IL concentration up to 10% is satisfactory for initial laccase activity at pH 9.0. The laccase stability was well maintained in [C4mim][Cl] IL when compared to the control. The inactivation of laccase increases with the length of the alkyl chain in the IL: [C10mim][Cl] > [C8mim][Cl] > [C4mim][Cl]. The kinetic studies in the presence of ABTS as substrate allowed calculating the Michaelis–Menten parameters. Among the ILs, [C4mim][Cl] was the suitable choice attending to laccase activity and stability. Alkyl chains in the ions of ILs have a deactivating effect on laccase, which increases strongly with the length of the alkyl chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Welton, T. (2004). Coordination Chemistry Reviews, 248, 2459–2477.

    Article  CAS  Google Scholar 

  2. Abdul-Sada, A. K., Greenway, A. M., Seddon, K. R., & Welton, T. (1998). Organic Mass Spectrometry, 28, 759–765.

    Article  Google Scholar 

  3. Anderson, C. J., Deakin, M. R., Choppin, G. R., D’Olieslager, W., & Heerman, L. (1991). Inorganic Chemistry, 30, 4013–4016.

    Article  CAS  Google Scholar 

  4. Bonhte, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K., & Grtzel, M. (1996). Inorganic Chemistry, 35, 1168–1178.

    Article  Google Scholar 

  5. Dadi, A. P., Schall, C. A., & Varanasi, S. (2007). Applied Biochemistry and Biotechnology, 137–140, 407–421.

    Article  Google Scholar 

  6. Kragl, U., Eckstein, M., & Kaftzik, N. (2002). Current Opinion in Biotechnology, 13, 565–571.

    Article  CAS  Google Scholar 

  7. Castro, G. R., & Knubovets, T. (2003). Critical Reviews in Biotechnology, 3, 195–231.

    Google Scholar 

  8. Halling, P. J. (2004). Philosophical transactions of the Royal Society B, 359, 1287–1297.

    Article  CAS  Google Scholar 

  9. Vidya, P., & Chadha, A. (2009). Journal of Molecular Catalysis. B, Enzymatic, 57, 145–148.

    Article  CAS  Google Scholar 

  10. Diego, T., Lozano, P., Gmouh, S., Vaultier, M., & Iborra, J. L. (2005). Biomacromolecules, 6, 1457–1464.

    Article  Google Scholar 

  11. Mantarosie, L., Coman, S., & Parvulescu, V. I. (2008). Journal of Molecular Catalysis. A, Chemical, 279, 223–229.

    Article  CAS  Google Scholar 

  12. Lau, R. M., Sorgedrager, M. J., Carrea, G., Rantwijk, F., Secundo, F., & Sheldon, R. A. (2004). Green Chemistry, 6, 483–487.

    Article  Google Scholar 

  13. Dang, D. T., Ha, S. H., Lee, S. M., Chang, W. J., & Koo, Y. M. (2007). Journal of Molecular Catalysis. B, Enzymatic, 45, 118–121.

    Article  CAS  Google Scholar 

  14. Sanfilippo, C., D’Antona, N., & Nicolosi, G. (2004). Biotechnological Letters, 26, 1815–1819.

    Article  CAS  Google Scholar 

  15. Hinckley, G., Mozhaev, V. V., Budde, C., & Khmelnitsky, Y. L. (2002). Biotechnological Letters, 24, 2083–2087.

    Article  CAS  Google Scholar 

  16. Dordick, J. S. (1989). Enzyme and Microbial Technology, 11, 194–211.

    Article  CAS  Google Scholar 

  17. Moniruzzaman, M., Nakashima, K., Kamiya, N., & Goto, M. (2010). Biochemical Engineering Journal, 48, 295–314.

    Article  CAS  Google Scholar 

  18. Lozano, P. (2010). Green Chemistry, 12, 555–569.

    Article  CAS  Google Scholar 

  19. Zaragoza-Gasca, P., Villamizar-Galvez, O. J., García-Arrazola, R., Gimenoa, M., & Bárzana, E. (2010). Polymers for Advanced Technologies, 21, 454–456.

    CAS  Google Scholar 

  20. Mougin, C., Jolivalt, C., Briozzo, P., & Madzak, C. (2003). Environmental Chemistry Letters, 1, 145–148.

    Article  CAS  Google Scholar 

  21. Yaropolov, A. I., Skorobogat’ko, I. O. V., Vartanov, S. S., & Varfolomeyev, S. D. (1994). Applied Biochemistry and Biotechnology, 49, 257–280.

    Article  CAS  Google Scholar 

  22. Okazaki, S-y, Michizoe, J., Goto, M., Furusaki, S., Wariishi, H., & Tanaka, H. (2002). Enzyme and Microbial Technology, 31, 227–232.

    Article  CAS  Google Scholar 

  23. Riva, S. (2006). Trends in Biotechnology, 24, 219–226.

    Article  CAS  Google Scholar 

  24. Amaral, P. F. F., Fernandes, D. L. A., Tavares, A. P. M., Xavier, A. B. M. R., Cammarota, M. C., Coutinho, J. A. P., et al. (2004). Environmental Technology, 25, 1313–1320.

    Article  CAS  Google Scholar 

  25. Tavares, A. P. M., Cristóvão, R. O., Loureiro, J. M., Boaventura, R. A. R., & Macedo, E. A. (2008). Journal of Chemical Technology and Biotechnology, 83, 1609–1615.

    Article  CAS  Google Scholar 

  26. Gamelas, J. A. F., Tavares, A. P. M., Evtuguin, D. V., & Xavier, A. M. B. (2005). Journal of Molecular Catalysis. B, Enzymatic, 33, 57–64.

    Article  CAS  Google Scholar 

  27. Dwivedi, P., Vivekanand, V., Pareek, N., Sharma, A., & Singh, R. P. (2010). Applied Biochemistry and Biotechnology, 160, 255–268.

    Article  CAS  Google Scholar 

  28. Chiacchierini, E. (2004). Food Science and Technology International, 10, 373–382.

    Article  CAS  Google Scholar 

  29. Ander, P., & Messner, K. (1998). Biotechnology Techniques, 12, 191–195.

    Article  CAS  Google Scholar 

  30. Bourbonnais, R., & Paice, M. G. (1990). FEBS Letters, 267, 9–102.

    Article  Google Scholar 

  31. Thurston, C. F. (1994). Microbiology, 140, 19–26.

    Article  CAS  Google Scholar 

  32. Tavares, A. P. M., Rodriguez, O., & Macedo, E. A. (2008). Biotechnology and Bioengineering, 101, 201–207.

    Article  CAS  Google Scholar 

  33. Cao, Q., Quan, L., He, C., Li, N., Li, K., & Liu, F. (2008). Talanta, 77, 160–165.

    Article  CAS  Google Scholar 

  34. Chiappe, C., Leandri, E., Hammock, B. D., & Morisseau, C. (2007). Green Chemistry, 9, 162–168.

    Article  CAS  Google Scholar 

  35. Tokuda, H., Hayamizu, K., Ishii, K., Susan, A. B. H., & Watanabe, M. (2005). The Journal of Physical Chemistry. B, 109, 6103–6110.

    Article  CAS  Google Scholar 

  36. Gomez, E., González, B., Domínguez, A., Tojo, E., & Tojo, J. (2006). Journal of Chemical and Engineering Data, 51, 696–701.

    Article  CAS  Google Scholar 

  37. Rantwijk, F. V., & Sheldon, R. A. (2007). Chemical Reviews, 107, 2757–2785.

    Article  Google Scholar 

  38. Zhao, H. (2005). Journal of Molecular Catalysis. B, Enzymatic, 37, 16–25.

    Article  CAS  Google Scholar 

  39. Zhao, H. (2006). Journal of Chemical Technology and Biotechnology, 81, 877–891.

    Article  CAS  Google Scholar 

  40. Zhao, H., Campbell, S. M., Jackson, L., Song, Z., & Olubajo, O. (2006). Tetrahedron Asymmetry, 17, 377–383.

    Article  CAS  Google Scholar 

  41. Gianfreda, L., Sannino, F., Filazzola, M. T., & Leonowicz, A. (1998). Journal of Molecular Catalysis. B, Enzymatic, 4, 13–23.

    Article  CAS  Google Scholar 

  42. Hofer, C., & Schlosser, D. (1999). FEBS Letters, 451, 186–190.

    Article  CAS  Google Scholar 

  43. Michniewicz, A., Ledakowicz, S. L., Ullrich, R., & Hofrichter, M. (2008). Dyes and Pigments, 77, 295–302.

    Article  CAS  Google Scholar 

  44. Cristóvão, R. O., Tavares, A. P. M., Ribeiro, A. S., Loureiro, J. M., Boaventura, R. A. R., & Macedo, E. A. (2008). Bioresource Technology, 99, 4768–4774.

    Article  Google Scholar 

  45. Ryan, S., Schnitzhofer, W., Tzanov, T., Cavaco-Paulo, A., & Gubitz, G. M. (2003). Enzyme and Microbial Technology, 33, 766–774.

    Article  CAS  Google Scholar 

  46. Ma, H.-L., Kermasha, S., Gao, J.-M., Borges, R. M., & Yue, X.-Z. (2009). Journal of Molecular Catalysis. B, Enzymatic, 57, 89–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugénia A. Macedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, O., Cristóvão, R.O., Tavares, A.P.M. et al. Study of the Alkyl Chain Length on Laccase Stability and Enzymatic Kinetic with Imidazolium Ionic Liquids. Appl Biochem Biotechnol 164, 524–533 (2011). https://doi.org/10.1007/s12010-010-9154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9154-2

Keywords

Navigation