Skip to main content
Log in

Effects of Pluronic F68 on Manganese Peroxidase Production by Pelletized Phanerochaete chrysosporium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a new process was developed for manganese peroxidase (MnP) production by Phanerochaete chrysosporium under an agitated and aerated cultivation condition. It was found that change of the inoculum from spore suspension to pellets resulted in enhanced MnP production of 200 U/L in rotated shake flasks. Several additives, including Pluronic F68, Tween 80, and PEG8000, significantly increased the enzyme production. With an optimal concentration in 125 mL flasks, Pluronic F68 increased MnP productivity by 180%. Moreover, successful enzyme production was achieved in a 5-L fermentor at an agitation speed of 300 rpm with the addition of 0.1% Pluronic F68.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kersten, P., & Cullen, D. (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology, 44, 77–87.

    Article  CAS  Google Scholar 

  2. Tien, M., & Kirk, T. K. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds. Science, 221, 661–662.

    Article  CAS  Google Scholar 

  3. Kirk, T. K., Tien, M., Kersten, P. J., Kalyanaraman, B., Hammel, K. E., & Farrell, R. L. (1990). Lignin peroxidase from fungi: Phanerochaete chrysosporium. Methods in Enzymology, 188, 159–171.

    Article  CAS  Google Scholar 

  4. Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56, 1–24.

    Article  CAS  Google Scholar 

  5. Srebotnik, E., Jensen, K. A., & Hammel, K. E. (1994). Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 91, 12794–12797.

    Article  CAS  Google Scholar 

  6. Paice, M. G., Bourbonnais, R., Reid, I. D., Archibald, F. S., & Jurasek, L. (1995). Oxidative bleaching enzymes—a review. Journal of Pulp and Paper Science, 21, 280–284.

    Google Scholar 

  7. Patel, H., Gupte, A., & Gupte, S. (2008). Biodegradation of fluoranthene by basidiomycetes fungal isolate Pleurotus ostreatus HP-1. Appllied Biochemistry and Biotechnology, 157, 367–376.

    Article  Google Scholar 

  8. Tekere, M., Read, J. S., & Mattiasson, B. (2007). Polycyclic aromatic hydrocarbon biodegradation by a subtropical white rot fungus in packed bed and suspended carrier bioreactor systems. Environmental Technology, 28, 683–691.

    Article  CAS  Google Scholar 

  9. Conesa, A., Punt, P. J., & van den Hondel, C. A. M. J. J. (2002). Fungal peroxidases: Molecular aspects and applications. Journal of Biotechnology, 93, 143–158.

    Article  CAS  Google Scholar 

  10. Jager, A., Croan, S., & Kirk, T. K. (1985). Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Applied and Environmental Microbiology, 50, 1274–1278.

    CAS  Google Scholar 

  11. Venkatadri, R., & Irvine, R. L. (1990). Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 56, 2684–2691.

    CAS  Google Scholar 

  12. Chisti, Y. (2000). Animal-cell damage in sparged bioreactors. Trends in Biotechnology, 18, 420–432.

    Article  CAS  Google Scholar 

  13. Papoutsakis, E. T. (1991). Media additives for protecting freely suspended animal-cells against agitation and aeration damage. Trends in Biotechnology, 9, 316–324.

    Article  CAS  Google Scholar 

  14. Hua, J. M., Erickson, L. E., Yiin, T. Y., & Glasgow, L. A. (1993). A review of the effects of shear and interfacial phenomena on cell viability. Critical Reviews in Biotechnology, 13, 305–328.

    Article  CAS  Google Scholar 

  15. Palomares, L. A., Gonzalez, M., & Ramirez, O. T. (2000). Evidence of Pluronic F-68 direct interaction with insect cells: Impact on shear protection, recombinant protein, and baculovirus production. Enzyme and Microbial Technology, 26, 324–331.

    Article  CAS  Google Scholar 

  16. Gigout, A., Buschmann, M. D., & Jolicoeur, M. (2008). The fate of Pluronic F-68 in chondrocytes and CHO cells. Biotechnology and Bioengineering, 100, 975–987.

    Article  CAS  Google Scholar 

  17. Grgic, I., & Perdih, A. (2003). Stimulation of ligninolytic enzyme production in Phanerochaete chrysosporium by polyoxyalkanes. Journal of Applied Microbiology, 94, 360–368.

    Article  CAS  Google Scholar 

  18. Asther, M., Corrieu, G., Drapron, R., & Odier, E. (1987). Effect of Tween-80 and oleic-acid on ligninase production by Phanerochaete-chrysosporium ina-12. Enzyme and Microbial Technology, 9, 245–249.

    Article  CAS  Google Scholar 

  19. Asther, M., Lesage, L., Drapron, R., Corrieu, G., & Odier, E. (1988). Phospholipid and fatty-acid enrichment of Phanerochaete chrysosporium ina-12 in relation to ligninase production. Applied Microbiology and Biotechnology, 27, 393–398.

    Article  CAS  Google Scholar 

  20. Capdevila, C., Moukha, S., Ghyczy, M., Theilleux, J., Gelie, B., Delattre, M., et al. (1990). Characterization of peroxidase secretion and subcellular organization of Phanerochaete chrysosporium ina-12 in the presence of various soybean phospholipid fractions. Applied and Environmental Microbiology, 56, 3811–3816.

    CAS  Google Scholar 

  21. Ha, H. C., Honda, Y., Watanabe, T., & Kuwahara, M. (2001). Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Applied Microbiology and Biotechnology, 55, 704–711.

    Article  CAS  Google Scholar 

  22. Papagianni, M., & Moo-Young, M. (2002). Protease secretion in glucoamylase producer Aspergillus niger cultures: Fungal morphology and inoculum effects. Process Biochemistry, 37, 1271–1278.

    Article  CAS  Google Scholar 

  23. Krishna, C. (2005). Solid-state fermentation systems—an overview. Critical Reviews in Biotechnology, 25, 1–30.

    Article  CAS  Google Scholar 

  24. Xu, J. F., Wang, L. P., Ridgway, D., Gu, T. Y., & Moo-Young, M. (2000). Increased heterologous protein production in Aspergillus niger fermentation through extracellular proteases inhibition by pelleted growth. Biotechnology Progress, 16, 222–227.

    Article  CAS  Google Scholar 

  25. Braun, S., & Vechtlifshitz, S. E. (1991). Mycelial morphology and metabolite production. Trends in Biotechnology, 9, 63–6826.

    Google Scholar 

  26. Daniel, G., Nilsson, T., & Pettersson, B. (1989). Intracellular and extracellular localization of lignin peroxidase during the degradation of solid wood and wood fragments by Phanerochaete chrysosporium by using transmission electron-microscopy and immuno-gold labeling. Applied and Environmental Microbiology, 55, 871–881.

    CAS  Google Scholar 

Download references

Acknowledgement

The research was partially supported by the Agricultural Research Center of Washington State University and Shanghai Municipal Natural Science Foundation (09ZR1407800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-lin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Zm., Liu, Y., Chi, Zy. et al. Effects of Pluronic F68 on Manganese Peroxidase Production by Pelletized Phanerochaete chrysosporium . Appl Biochem Biotechnol 164, 487–496 (2011). https://doi.org/10.1007/s12010-010-9150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9150-6

Keywords

Navigation