Skip to main content
Log in

Distribution of Heavy Metal Contents and Chemical Fractions in Anaerobically Digested Manure Slurry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Digested slurry samples from twenty-one large-scale anaerobic digestion plants together with intensive pig and dairy farms in Jiangsu Province of China were collected and analyzed for total and dissolved concentrations of Zn, Cu and As, as well as chemical characteristics. The results showed that total concentrations of Zn, Cu and As in digested pig slurries were concentrated to <10, <5 and 0.02–0.1 mg/l, respectively; while <2 and 10–30, <1, and 0.02–0.1 mg/l, respectively, in digested dairy slurries. Lowering the dietary supply of these elements to pig and dairy would be the most effective way to control heavy metal contents in digested manure slurries. Dissolved fractions of Zn, Cu and As accounted for 1–74%, 1–33% and 2–53% of the total concentrations, respectively, in digested pig slurries; and 18–65%, 12–58% and 3–68% in digested dairy slurries. The chemical fractions of heavy metals in digested slurries were not only dependent on the total concentrations of heavy metals in raw manures but also on conditions of digestion and storage. Oxidation pond systems could significantly cripple the total contents of heavy metals in digested slurries, and the removal effect was better in multi-oxidation-pond systems than that in primary-oxidation-pond systems. However, the chemical fractions of heavy metals in digested slurries changed in a complicated manner when stored in oxidation ponds, due to the suspended solid deposition, elements reduction, as well as variations of pH values and oxidation-reduction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan, L., Li, J. M., & Ren, Y. X. (2006). Symbiosis effect of rural biogas project. Transactions CSAE, 22(S1), 89–92.

    Google Scholar 

  2. Lu, J. B., Zhu, L., Hu, G. L., & Wu, J. G. (2010). Integrating animal manure-based bioenergy production with invasive species control: a case study at Tongren Pig Farm in China. Biomass and Bioenergy, 34(6), 821–827.

    Article  CAS  Google Scholar 

  3. Gebrezgabher, S. A., Meuwissen, M. P. M., Prins, B. A. M., & Oude Lansink, A. G. J. M. (2010). Economic analysis of anaerobic digestion—a case of green power biogas plant in the Netherlands. NJAS–Wageningen Journal of Life Sciences, 57(2), 109–115.

    Article  Google Scholar 

  4. Börjesson, P., & Berglund, M. (2006). Environmental systems analysis of biogas systems: part I. Fuel-cycle emissions. Biomass and Bioenergy, 30(5), 469–485.

    Article  Google Scholar 

  5. Murphy, J. D., & Power, N. (2009). Technical and economic analysis of biogas production in Ireland utilizing three different crop rotations. Applied Energy, 86(1), 25–36.

    Article  Google Scholar 

  6. Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., et al. (2007). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology, 98(17), 3204–3212.

    Article  CAS  Google Scholar 

  7. Weiland, P. (2006). Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Engineering in Life Science, 6(3), 302–309.

    Article  CAS  Google Scholar 

  8. Chen, Y., Yang, G. H., Sweeney, S., & Feng, Y. Z. (2010). Household biogas use in rural China: a study of opportunities and constraints. Renewable and Sustainable Energy Reviews, 14(1), 545–549.

    Article  Google Scholar 

  9. Gómez, X., Cuetos, M. J., García, A. I., & Morán, A. (2005). Evaluation of digestates stability from anaerobic process by thermogravimetric analysis. Thermochimica Acta, 426(1–2), 179–184.

    Article  Google Scholar 

  10. Marcato, C. E., Pinelli, E., Pouech, P., Winterton, P., & Guiresse, M. (2008). Particle size and metal distributions in anaerobically digested pig slurry. Bioresource Technology, 99(7), 2340–2348.

    Article  CAS  Google Scholar 

  11. Jondreville, C., Revy, P. S., & Dourmad, J. Y. (2003). Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livestock Production Science, 84(2), 147–156.

    Article  Google Scholar 

  12. Silbergeld, E. K., & Nachman, K. (2008). The environmental and public health risks associated with arsenical use in animal feeds. Annals of the New York Academy of Sciences, 1140, 346–357.

    Article  CAS  Google Scholar 

  13. Cang, L., Wang, Y. J., Zhou, D. M., & Dong, Y. H. (2004). Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. Journal of Environmental Sciences, 16(3), 371–374.

    CAS  Google Scholar 

  14. Dong, Z. R., Chen, Y. D., Lin, X. Y., Zhang, Y. S., & Ni, D. H. (2008). Investigation on the contents and fraction of heavy metals in swine manures from intensive livestock farms in the suburb of Hangzhou. Acta Agriculturae Zhejiangensis, 20(1), 35–39.

    Google Scholar 

  15. Suo, C., Li, Y. X., Zhang, Z. Q., Han, W., Xiong, X., Li, W., et al. (2009). Residual character of Zn in feeds and their feces from intensive livestock and poultry farms in Beijing. Journal of Agro-Environment Science, 28(10), 2173–2179.

    CAS  Google Scholar 

  16. Nicholson, F. A., Chambers, B. J., Williams, J. R., & Unwin, R. J. (1999). Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 70(1), 23–31.

    Article  CAS  Google Scholar 

  17. Garbarino, J. R., Bednar, A. J., Rutherford, D. W., Beyer, R. S., & Wershaw, R. L. (2003). Environmental fate of roxarsone in poultry litter: I. Degradation of roxarsone during composting. Environmental Science & Technology, 37(8), 1509–1514.

    Article  CAS  Google Scholar 

  18. Su, D. C., & Wong, J. W. C. (2004). Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International, 29(7), 895–900.

    Article  CAS  Google Scholar 

  19. Ko, H. J., Kim, K. Y., Kim, H. T., Kim, C. N., & Umeda, M. (2008). Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management, 28(5), 813–820.

    Article  CAS  Google Scholar 

  20. He, M. M., Li, W. H., Liang, X. Q., Wu, D. L., & Tian, G. M. (2009). Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Management, 29(2), 590–597.

    Article  CAS  Google Scholar 

  21. Nachman, K. E., Graham, J. P., Price, L. B., & Silbergeld, E. K. (2005). Arsenic: a roadblock to potential animal waste management solutions. Environmental Health Perspectives, 113(9), 1123–1124.

    Article  CAS  Google Scholar 

  22. Zhang, X. Z., Zhang, F. S., Li, Y. X., Han, W., & Yang, M. (2009). The effects of manure composing on distribution of Cu and Zn speciations in soils. Journal of Agro-Environment Science, 28(9), 1975–1979.

    CAS  Google Scholar 

  23. Wang, W. S., Shen, X. Q., Wen, B., & Zhang, S. Z. (2003). Relationship between the extractable metals from soils and metals taken up by Maize roots and shoots. Chemosphere, 53(5), 523–530.

    Article  CAS  Google Scholar 

  24. Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K., et al. (2007). Arsenic hazards: strategies for tolerance and remediation by plant. Trends in Biotechnology, 25(4), 158–165.

    Article  CAS  Google Scholar 

  25. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692.

    Article  CAS  Google Scholar 

  26. Huang, M. L., Zhou, S. L., Sun, B., & Zhao, Q. G. (2008). Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. The Science of the Total Environment, 405(1–3), 54–61.

    CAS  Google Scholar 

  27. Gan, S. W., Xu, Z. B., & Huang, W. (2008). Key technology for ecological application of large-scale biogas project. Chinese Journal of Eco-Agriculture, 16(5), 1293–1297.

    Article  Google Scholar 

  28. Fuentes, A., Lloréns, M., Sáez, J., Soler, A., Aguilar, M. I., Orthño, J. F., et al. (2004). Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere, 54(8), 1039–1047.

    Article  CAS  Google Scholar 

  29. Houghton, J. I., Burgess, J. E., & Stephenson, T. (2002). Off-line particle size analysis of digested sludge. Water Research, 36(18), 4643–4647.

    Article  CAS  Google Scholar 

  30. Zhong, P., Li, Z. B., Li, Q. R., & Wang, Z. Y. (2007). Contents of selected nutrients and heavy metals in biogas slurry. Journal of Agro-Environment Science, 26(S), 165–171.

    Google Scholar 

  31. Alonso, E., Villar, P., Santos, A., & Aparicio, I. (2006). Fraction of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain. Waste Management, 26(11), 1270–1276.

    Article  CAS  Google Scholar 

  32. Li, X. L., He, W. L., & Dong, S. L. (2006). Contamination by heavy metals in feed and measures of prevention and control. Feed Industry, 27(17), 48–51.

    CAS  Google Scholar 

  33. MAFF (1991). Code of Good Agricultural Practice for the Protection of Water. MAFF publications, London (PB0587).

  34. Ye, C., Xu, Q. J., Kong, H. N., Shen, Z. M., & Yan, C. Z. (2007). Eutrophication conditions and ecological status in typical bays of Lake Taihu in China. Environmental Monitoring and Assessment, 135(1–3), 217–225.

    Article  CAS  Google Scholar 

  35. Zhao, Y. F., Shi, X. Z., Huang, B., Yu, D. S., Wang, H. J., Sun, W. X., et al. (2007). Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere, 17(1), 44–51.

    Article  Google Scholar 

  36. Wan, H. Y., Zhou, S. L., & Zhao, Q. G. (2005). Spatial variation of content of soil heavy metals in region with high economy development of south Jiangsu province. Scientia Geographica Sinica, 25(3), 329–334.

    Google Scholar 

  37. Temminghoff, E. J. M., Van der Zee, S. E. A. T. M., & de Haan, F. A. M. (1997). Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environmental Science & Technology, 31(4), 1109–1115.

    Article  CAS  Google Scholar 

  38. Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300(5621), 939–944.

    Article  CAS  Google Scholar 

  39. Bolan, N. S., Khan, M. A., Donaldson, J., Adriano, D. C., & Matthew, C. (2003). Distribution and bioavailability of copper in farm effluent. The Science of the Total Environment, 309(1–3), 225–236.

    Article  CAS  Google Scholar 

  40. Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 34(22), 4747–4753.

    Article  CAS  Google Scholar 

  41. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was finally supported by the Ministry of Agriculture (No. 200903011-01) and Jiangsu International Cooperation Project (No. BZ2009101). The authors thank Dr. Xiaomei Ye, Dr. Yan Ma and Ms. Jin Zhu for data sharing, and Ms. Zhi Xu and the staff in various farms for logistic assistance and help with sampling. We thank He Chang for help with translating clearly. The constructive comments by two anonymous reviewers have helped to improver this paper over an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhou Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Chang, Z. Distribution of Heavy Metal Contents and Chemical Fractions in Anaerobically Digested Manure Slurry. Appl Biochem Biotechnol 164, 268–282 (2011). https://doi.org/10.1007/s12010-010-9133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9133-7

Keywords

Navigation