Skip to main content

Advertisement

Log in

Near-Infrared Chemometric Approach to Exhaustive Analysis of Rice Straw Pretreated for Bioethanol Conversion

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We report a simple analytical procedure combining near-infrared (NIR) spectroscopy with multivariate analysis to detect the saccharification efficiency of pretreated rice straw. Three types of sample preparation methods were tested to develop a powerful calibration model, with the disk sample used as the standard protocol. From the spectra dataset of NaOH-treated biomass, we obtained a good calibration for the saccharification ratio and some major structural components by partial least-squares regression. Adding dataset from hot water and dilute sulfuric acid pretreatments to NaOH sample dataset, an acceptable calibration model to predict the saccharification ratio as well as the glucose, xylose, and lignin contents was generated. NIR has a great potential for rapid screening of saccharification efficiency of pretreated biomass, which would allows us to control the quality of processing toward better bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adney, B., & Baker, J. (1996). National Renewable Energy Laboratory, Golden, CO, USA. from http://www.nrel.gov/biomass/analytical_procedures.html#lap-009.

  2. Hames, B. R., Thomas, S. R., Sluiter, A. D., Roth, C. J., & Templeton, D. W. (2003). Applied Biochemistry and Biotechnology, 105, 5–16.

    Article  Google Scholar 

  3. Hirabayashi, H., Nemoto, H., Ando, I., Kato, H., Oota, H., Satou, H., et al. (2010). Bull Natl Inst Crop Sci, 11, 31–47.

    Google Scholar 

  4. Hörmeyer, H. F., Schwald, W., Bonn, G., & Bobleter, O. (1988). Holzforschung, 42, 95–98.

    Article  Google Scholar 

  5. Jin, S. Y., & Chen, H. Z. (2007). Industrial Crops and Products, 26, 207–211.

    Article  CAS  Google Scholar 

  6. Jones, P. D., Schimleck, L. R., Peter, G. F., Daniels, R. F., & Clark, A. (2006). Wood Science and Technology, 40, 709–720.

    Article  CAS  Google Scholar 

  7. Knappert, D., Grethlein, H., & Converse, A. (1980). Biotechnology and Bioengineering, 22, 1449–1463.

    Article  CAS  Google Scholar 

  8. Luchsinger, W. W., & Cornesky, R. A. (1962). Analytical Biochemistry, 4, 346–347.

    Article  CAS  Google Scholar 

  9. Macdonald, D. G., Bakhshi, N. N., Mathews, J. F., Roychowdhury, A., Bajpai, P., & Moo-Young, M. (1983). Biotechnology and Bioengineering, 25, 2067–2076.

    Article  CAS  Google Scholar 

  10. Negro, M. J., Manzanares, P., Ballesteros, I., Oliva, J. M., Cabañas, A., & Ballesteros, M. (2003). Applied Biochemistry and Biotechnology, 105, 87–100.

    Article  Google Scholar 

  11. Nguyen, Q. A., Tucker, M. P., Keller, F. A., & Eddy, F. P. (2000). Applied Biochemistry and Biotechnology, 84–86, 561–576.

    Article  Google Scholar 

  12. Rodriguez-Saona, L. E., Fry, F. S., McLaughlin, M. A., & Calvey, E. M. (2001). Carbohydrate Research, 336, 63–74.

    Article  CAS  Google Scholar 

  13. Sánchez, Ó. J., & Cardona, C. A. (2008). Bioresource Technology, 99, 5250–5295.

    Article  Google Scholar 

  14. Savitzky, A., & Golay, M. J. E. (1964). Analytical Chemistry, 36, 1627–1639.

    Article  CAS  Google Scholar 

  15. Schimleck, L. R., Evans, R., Jones, P. D., Daniels, R. F., Peter, G. F., & Clark, A., III. (2005). IAWA Journal, 26, 175–187.

    Google Scholar 

  16. Soto, M. L., Domínguez, H., Núñez, M. J., & Lema, J. M. (1994). Bioresource Technology, 49, 53–59.

    Article  CAS  Google Scholar 

  17. Tsuchikawa, S., Yonenobu, H., & Siesler, H. W. (2005). The Analyst, 130, 379–384.

    Article  CAS  Google Scholar 

  18. Williams, P. C., & Sobering, D. C. (1993). Journal of Near Infrared Spectroscopy, 1, 25–33.

    Article  CAS  Google Scholar 

  19. Wolfrum, E. J., & Sluiter, A. D. (2009). Cellulose, 16, 567–576.

    Article  CAS  Google Scholar 

  20. Ye, X. P., Liu, L., Hayes, D., Womac, A., Hong, K. L., & Sokhansanj, S. (2008). Bioresource Technology, 99, 7323–7332.

    Article  Google Scholar 

  21. Zhao, Y. L., Wang, Y., Zhu, J. Y., Ragauskas, A., & Deng, Y. L. (2008). Biotechnology and Bioengineering, 99, 1320–1328.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO). The authors express their appreciation to Dr. H. Shinzawa from Research Institute of Instrumentation Frontier, Advanced Industrial Science and Technology (AIST) for the technical advice on chemometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Horikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horikawa, Y., Imai, T., Takada, R. et al. Near-Infrared Chemometric Approach to Exhaustive Analysis of Rice Straw Pretreated for Bioethanol Conversion. Appl Biochem Biotechnol 164, 194–203 (2011). https://doi.org/10.1007/s12010-010-9127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9127-5

Keywords

Navigation