Skip to main content
Log in

A Subtractively Optimized DNA Microarray Using Non-sequenced Genomic Probes for the Detection of Food-Borne Pathogens

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we present the successful detection of food-borne pathogens using randomly selected non-sequenced genomic DNA probes-based DNA microarray chips. Three food-borne pathogens, Staphylococcus aureus, Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium), and Bacillus cereus, were subjected for the preparation of the DNA microarray probes. Initially, about 50 DNA probes selected randomly from non-sequenced genomic DNA of each pathogen were prepared by using a set of restriction enzyme pairs. The proto-type of DNA microarray chip for detecting three different pathogens simultaneously was fabricated by using those DNA probes prepared for each pathogen. This proto-type DNA microarray has been tested with three target pathogens and additional seven bacteria, and successfully verified with a few cross-hybridized probes. After this primary verification of the DNA microarray hybridization, this proto-type DNA microarray chip was redesigned and successfully optimized by eliminating a few cross-hybridized probes. The specificity of this redesigned DNA microarray chip to each pathogen was confirmed without any serious cross-hybridizations, and its multiplexing capability in its pathogen detection was found to be possible. This randomly selected non-sequenced genomic DNA probes-based DNA microarray was successfully proved to be the high-throughput simultaneous detection chip for the detection of food-borne pathogens, without knowing the exact sequence information of the target bacteria. This could be the first fabrication of DNA microarray chip for the simultaneous detection of different kinds of food-borne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tauxe, R. V. (2002). International Journal of Food Microbiology, 78, 31–41.

    Article  CAS  Google Scholar 

  2. Call, D. R., Borucki, M. K., & Loge, F. J. (2003). Journal of Microbiological Methods, 53, 235–243.

    Article  CAS  Google Scholar 

  3. Lazcka, O., Del Campo, F. J., & Munoz, F. X. (2007). Biosensors & Bioelectronics, 22, 1205–1217.

    Article  CAS  Google Scholar 

  4. Gracias, K. S., & McKillip, J. L. (2004). Canadian Journal of Microbiology, 50, 883–890.

    Article  CAS  Google Scholar 

  5. Hill, W. E., & Payne, W. L. (1984). Journal of the Association of Official Analytical Chemists, 67, 801–807.

    CAS  Google Scholar 

  6. Muyzer, G., Dewaal, E. C., & Uitterlinden, A. G. (1993). Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  7. Muyzer, G., & Smalla, K. (1998). Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 73, 127–141.

    Article  CAS  Google Scholar 

  8. Bohaychuk, V. M., Gensler, G. E., King, R. K., Wu, J. T., & McMullen, L. M. (2005). Journal of Food Protection, 68, 2637–2647.

    Google Scholar 

  9. Anderson, P. N., Hume, M. E., Byrd, J. A., Hernandez, C., Stevens, S. M., Stringfellow, K., et al. (2010). Poultry Science, 89, 1293–1300.

    Article  CAS  Google Scholar 

  10. Powell, S. M., Riddle, M. J., Snape, I., & Stark, J. S. (2005). Antarctic Science, 17, 353–360.

    Article  Google Scholar 

  11. Sekiguchi, H., Tomioka, N., Nakahara, T., & Uchiyama, H. (2001). Biotechnology Letters, 23, 1205–1208.

    Article  CAS  Google Scholar 

  12. Egert, M., & Friedrich, M. W. (2003). Applied and Environmental Microbiology, 69, 2555–2562.

    Article  CAS  Google Scholar 

  13. Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Genome Research, 6, 986–994.

    Article  CAS  Google Scholar 

  14. McKillip, J. L., & Drake, M. (2004). Journal of Food Protection, 67, 823–832.

    CAS  Google Scholar 

  15. Rodriguez-Lazaro, D., D’Agostino, M., Herrewegh, A., Pla, M., Cook, N., & Ikonomopoulos, J. (2005). International Journal of Food Microbiology, 101, 93–104.

    Article  CAS  Google Scholar 

  16. Li, X. F., Zhang, S., Zhang, H. W., Zhang, L. H., Tao, H. T., Yu, J., et al. (2009). International Journal of Food Microbiology, 133, 252–258.

    Article  CAS  Google Scholar 

  17. Omiccioli, E., Amagliani, G., Brandi, G., & Magnani, M. (2009). Food Microbiology, 26, 615–622.

    Article  CAS  Google Scholar 

  18. Maynard, C., Berthiaume, F., Lemarchand, K., Harel, J., Payment, P., Bayardelle, P., et al. (2005). Applied and Environmental Microbiology, 71, 8548–8557.

    Article  CAS  Google Scholar 

  19. Volokhov, D., Rasooly, A., Chumakov, K., & Chizhikov, V. (2002). Journal of Clinical Microbiology, 40, 4720–4728.

    Article  CAS  Google Scholar 

  20. Kim, B. C., Park, J. H., & Gu, M. B. (2004). Environmental Science & Technology, 38, 6767–6774.

    Article  CAS  Google Scholar 

  21. Kim, B. C., Park, J. H., & Gu, M. B. (2005). Analytical Chemistry, 77, 2311–2317.

    Article  CAS  Google Scholar 

  22. Vandyk, T. K., Majarian, W. R., Konstantinov, K. B., Young, R. M., Dhurjati, P. S., & Larossa, R. A. (1994). Applied and Environmental Microbiology, 60, 1414–1420.

    CAS  Google Scholar 

  23. Park, M. O., Lim, K. H., Kim, T. H., & Chang, H. H. (2007). Journal of Microbiology and Biotechnology, 17, 342–347.

    CAS  Google Scholar 

  24. Andersen, O., Eijsink, V. G. H., & Thomassen, M. (2000). Gene, 255, 411–418.

    Article  CAS  Google Scholar 

  25. Rasooly, A., & Herold, K. E. (2008). Foodborne Pathogens and Disease, 5, 531–550.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant (code # 20080401034020) from BioGreen 21 Program, Rural Development Administration, Republic of Korea. The authors are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu.

Additional information

Jin Yong Lee and Byoung Chan Kim contributed equally to this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.Y., Kim, B.C., Chang, K.J. et al. A Subtractively Optimized DNA Microarray Using Non-sequenced Genomic Probes for the Detection of Food-Borne Pathogens. Appl Biochem Biotechnol 164, 183–193 (2011). https://doi.org/10.1007/s12010-010-9126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9126-6

Keywords

Navigation