Applied Biochemistry and Biotechnology

, Volume 164, Issue 1, pp 58–67 | Cite as

Ultrafiltration of Thin Stillage from Conventional and E-Mill Dry Grind Processes

  • Amit Arora
  • Bruce S. Dien
  • Ronald L. Belyea
  • Ping Wang
  • Vijay Singh
  • M. E. Tumbleson
  • Kent D. RauschEmail author


We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.


Biofuels Membrane filtration Nutrient separation Ethanol 


  1. 1.
    Demirbas, M. F., & Balat, M. (2006). Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Conversion and Management, 47, 2371–2381.CrossRefGoogle Scholar
  2. 2.
    RFA (2009) Industry statistics. Renewable Fuels Association, Washington, DC. Available from:
  3. 3.
    Belyea, R. L., Rausch, K. D., & Tumbleson, M. E. (2004). Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresource Technology, 94, 293–298.CrossRefGoogle Scholar
  4. 4.
    Chin, P. M., & Ingledew, W. M. (1993). Effect of recycled laboratory backset on fermentation of wheat mashes. Journal of Agricultural and Food Chemistry, 41, 1158–1163.CrossRefGoogle Scholar
  5. 5.
    Narendranath, N. V., Thomas, K. C., & Ingledew, W. M. (2001). Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. Journal of Industrial Microbiology & Biotechnology, 26, 171–177.CrossRefGoogle Scholar
  6. 6.
    Singh, V., Panchal, C. B., & Eckhoff, S. R. (1999). Effect of corn oil on thin stillage evaporators. Cereal Chemistry, 76, 846–849.CrossRefGoogle Scholar
  7. 7.
    Wilkins, M. R., Belyea, R. L., Singh, V., Buriak, P., Wallig, M. A., Tumbleson, M. E., et al. (2006). Analysis of heat transfer fouling by dry-grind maize thin stillage using an annular fouling apparatus. Cereal Chemistry, 83, 121–126.CrossRefGoogle Scholar
  8. 8.
    Meredith, J., Jacques, K. A., Lyons, T. P., & Kelsall, D. R. (2003). The alcohol textbook (pp. 355–361). Nottingham: Nottingham University Press.Google Scholar
  9. 9.
    Rausch, K. D., & Belyea, R. L. (2006). The future of coproducts from corn processing. Applied Biochemistry and Biotechnology, 128, 47–86.CrossRefGoogle Scholar
  10. 10.
    Wu, Y. V., Sexson, K. R., & Wall, J. S. (1983). Reverse-osmosis of soluble fraction of corn stillage. Cereal Chemistry, 60, 248–251.Google Scholar
  11. 11.
    Rausch, K. D. (2002). Front end to backpipe: Membrane technology in the starch processing industry. Starch/Starke, 54, 273–284.CrossRefGoogle Scholar
  12. 12.
    Thompson, C. I., Rausch, K. D., Belyea, R. L., & Tumbleson, M. E. (2006). Microfiltration of gluten processing streams from corn wet milling. Bioresource Technology, 97, 348–354.CrossRefGoogle Scholar
  13. 13.
    Templin, T. L., Johnston, D. B., Singh, V., Tumbleson, M. E., Belyea, R. L., & Rausch, K. D. (2006). Membrane separation of solids from corn processing streams. Bioresource Technology, 97, 1536–1545.CrossRefGoogle Scholar
  14. 14.
    Agbisit, R. M., Singh, V., Valenti, J. J., Kakleas, M., Tumbleson, M. E., & Rausch, K. D. (2003). Technique to measure surface-fouling tendencies of steepwater from corn wet milling. Cereal Chemistry, 80, 84–86.CrossRefGoogle Scholar
  15. 15.
    Arora, A., Dien, B. S., Belyea, R. L., Tumbleson, M. E., Singh, V., & Rausch, K. D. (2010). Nutrient recovery from the dry grind process using sequential micro and ultrafiltration of thin stillage. Bioresource Technology, 101, 3859–3863.CrossRefGoogle Scholar
  16. 16.
    AACC International. (2000). Approved methods of the American Association of Cereal Chemists, 44-15A, 44-19 (10th ed.). St Paul: AACC International.Google Scholar
  17. 17.
    Wang, P., Singh, V., Xu, L., Johnston, D. B., Rausch, K. D., & Tumbleson, M. E. (2005). Comparison of enzymatic (E-Mill) and conventional dry-grind corn processes using a granular starch hydrolyzing enzyme. Cereal Chemistry, 82, 734–738.CrossRefGoogle Scholar
  18. 18.
    Zeman, L. J., & Zydney, A. L. (1996). Microfiltration and ultrafiltration: Principles and applications. New York: Marcel Dekker.Google Scholar
  19. 19.
    AOAC. (2003). Official methods of the AOAC. Methods 920.39, 942.05, 990.03 (17th ed.). Gaithersburg: The Association of Official Analytical Chemists.Google Scholar
  20. 20.
    SAS. (1989). SAS user’s guide: Statistics (5th ed.). Cary: SAS Institute.Google Scholar
  21. 21.
    Belyea, R. L., Clevenger, T. E., Singh, V., Tumbleson, M., & Rausch, K. D. (2006). Element concentrations of dry-grind corn-processing streams. Applied Biochemistry and Biotechnology, 134, 113–128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Amit Arora
    • 1
  • Bruce S. Dien
    • 2
  • Ronald L. Belyea
    • 3
  • Ping Wang
    • 1
  • Vijay Singh
    • 1
  • M. E. Tumbleson
    • 1
  • Kent D. Rausch
    • 1
    Email author
  1. 1.Agricultural and Biological EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  2. 2.National Center for Agricultural Utilization Research, Agricultural Research ServiceUSDAPeoriaUSA
  3. 3.Animal SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations