Advertisement

Applied Biochemistry and Biotechnology

, Volume 164, Issue 1, pp 45–57 | Cite as

Affinity Covalent Immobilization of Glucoamylase onto ρ-Benzoquinone-Activated Alginate Beads: II. Enzyme Immobilization and Characterization

  • M. S. Mohy EldinEmail author
  • E. I. Seuror
  • M. A. Nasr
  • H. A. Tieama
Article

Abstract

A novel affinity covalent immobilization technique of glucoamylase enzyme onto ρ-benzoquinone-activated alginate beads was presented and compared with traditional entrapment one. Factors affecting the immobilization process such as enzyme concentration, alginate concentration, calcium chloride concentration, cross-linking time, and temperature were studied. No shift in the optimum temperature and pH of immobilized enzymes was observed. In addition, K m values of free and entrapped glucoamylase were found to be almost identical, while the covalently immobilized enzyme shows the lowest affinity for substrate. In accordance, V m value of covalently immobilized enzyme was found lowest among free and immobilized counter parts. On the other hand, the retained activity of covalently immobilized glucoamylase has been improved and was found higher than that of entrapped one. Finally, the industrial applicability of covalently immobilized glucoamylase has been investigated through monitoring both shelf and operational stability characters. The covalently immobilized enzyme kept its activity over 36 days of shelf storage and after 30 repeated use runs. Drying the catalytic beads greatly reduced its activity in the beginning but recovered its lost part during use. In general, the newly developed affinity covalent immobilization technique of glucoamylase onto ρ-benzoquinone-activated alginate carrier is simple yet effective and could be used for the immobilization of some other enzymes especially amylases.

Keywords

Bead formulation conditions Affinity immobilization Retention of activity Shelf stability Operational stability 

References

  1. 1.
    Gerhartz, W. (1990). General production methods. In W. Gerhartz (Ed.) Enzymes in industry (p. 67). New York: VCH.Google Scholar
  2. 2.
    Shankar, V., Nehete, P. N., & Kothari, R. M. (1993). Indian Journal of Biochemistry & Biophysics, 30, 62–70.Google Scholar
  3. 3.
    Ida, J., Matsuyama, T., & Yamamoto, H. (2000). Biochemical Engineering Journal, 5, 179–182.CrossRefGoogle Scholar
  4. 4.
    J-T, Oh, & Kim, J.-H. (2000). Enzyme and Microbial Technology, 27, 356–361.CrossRefGoogle Scholar
  5. 5.
    Bahar, T., & Celebi, S. S. (2000). Enzyme and Microbial Technology, 26, 28–33.CrossRefGoogle Scholar
  6. 6.
    Bahar, T., & Celebi, S. S. (1998). Enzyme and Microbial Technology, 23, 301–304.CrossRefGoogle Scholar
  7. 7.
    Tanaka, H., Kurosawa, H., Kokufuta, E., & Veliky, I. A. (1984). Biotechnology and Bioengineering, 26, 1393–1399.CrossRefGoogle Scholar
  8. 8.
    Tanriseven, A., Bozkurt Uluda, Y., & Dogan, S. (2002). Enzyme and Microbial Technology, 30, 406–409.CrossRefGoogle Scholar
  9. 9.
    Mohy Eldin, M. S., Hassan, E. A., & Elaassar, M. R. (2005). Deutsch lebensmittel Rundschau, 101, 255–259.Google Scholar
  10. 10.
    Mohy Eldin, M. S. (2005). Deutsch lebensmittel Rundschau, 101, 309–314.Google Scholar
  11. 11.
    Lee, P. M., Lee, K. H., & Siaw, Y. S. (1993). Journal of Chemical Technology and Biotechnology, 58, 65–70.Google Scholar
  12. 12.
    Li, T., Wang, N., Li, S., Zhao, Q., & Guo, M. (2007). Biotechnological Letters, 29, 1410–1416.Google Scholar
  13. 13.
    Teotia, S., Lata, R., Khare, S. K., & Gupta, M. N. (2001). Journal of Molecular Recognition, 14, 295–299.CrossRefGoogle Scholar
  14. 14.
    Silva, R. N., Asquieri, E. R., & Fernandes, K. F. (2005). Process Biochemistry, 40, 1155–1159.CrossRefGoogle Scholar
  15. 15.
    Rebros, M., Resenberg, M., Milchova, Z., Kristofikova, L., & Paulch, M. (2006). Enzyme and Microbial Technology, 39, 800–804.CrossRefGoogle Scholar
  16. 16.
    Park, D., Haam, S., Jang, K., Ahn, I., & Kim, W. (2005). Process Biochemistry, 40, 53–61.CrossRefGoogle Scholar
  17. 17.
    Tanriseven, A., & Olcer, Z. (2008). Biotechnology and Bioengineering Journal, 39, 430–434.Google Scholar
  18. 18.
    Serour, E., & Antranikian, G. (2002). Antonie van Leeuwenhoek, 81, 73–83.CrossRefGoogle Scholar
  19. 19.
    Arica, M. Y., Alaeddinoglu, N. G., & Hasirci Enzyme, V. (1998). Microbial Technology, 22, 152–157.CrossRefGoogle Scholar
  20. 20.
    Sanjay, G., & Sugunan, S. (2005). Catalysts Community, 6, 525–530.CrossRefGoogle Scholar
  21. 21.
    Silva, R. N., Asquieri, E. R., & Fernández, K. F. (2005). Proceedings of Biochemistry, 40, 1155–1159.CrossRefGoogle Scholar
  22. 22.
    Bai, Y., Li, Y., & Wang, M. (2006). Enzyme and Microbial Technology, 39, 540–547.CrossRefGoogle Scholar
  23. 23.
    Czichocki, G., Dautzenberg, H., Capan, E., & Vorlop, K. (2001). Biotechnological Letters, 23, 1303–1307.CrossRefGoogle Scholar
  24. 24.
    Dudra, A. H., Bryjak, J., & Trochimczuk, A. W. (2007). Enzyme and Microbial Technology, 41, 197–204.CrossRefGoogle Scholar
  25. 25.
    Bryjak, J. (2003). Biochemical Engineering Journal, 16, 347–355.CrossRefGoogle Scholar
  26. 26.
    Uhlich, T., Ulbricht, M., & Tomaschewski, G. (1996). Enzyme and Microbial Technology, 19, 124–131.CrossRefGoogle Scholar
  27. 27.
    Arica, M. Y., Handan, Y., Patir, S., & Denizli, A. (2000). Journal of Molecular Catalysis. B, Enzymatic, 11, 127–138.CrossRefGoogle Scholar
  28. 28.
    D’Souza, S. F., & Kubal, B. S. (2002). Journal of Biochemical and Biophysical Methods, 51, 151–159.CrossRefGoogle Scholar
  29. 29.
    Milosavic, N., Prodanvic, R., Jovanovic, S., & Vujcic, Z. (2007). Enzyme and Microbial Technology, 40, 1422–1426.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. S. Mohy Eldin
    • 1
    Email author
  • E. I. Seuror
    • 2
  • M. A. Nasr
    • 3
  • H. A. Tieama
    • 1
  1. 1.Polymer Materials Research Department, Advanced Technologies and New Material Research InstituteMubarak City for Scientific Research and Technology ApplicationsAlexandriaEgypt
  2. 2.Protein Research Department, Genetic Engineering and Biotechnology Research InstituteMubarak City for Scientific Research and Technology ApplicationsAlexandriaEgypt
  3. 3.Department of Chemistry, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations