Skip to main content
Log in

Affinity Covalent Immobilization of Glucoamylase onto ρ-Benzoquinone-Activated Alginate Beads: II. Enzyme Immobilization and Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel affinity covalent immobilization technique of glucoamylase enzyme onto ρ-benzoquinone-activated alginate beads was presented and compared with traditional entrapment one. Factors affecting the immobilization process such as enzyme concentration, alginate concentration, calcium chloride concentration, cross-linking time, and temperature were studied. No shift in the optimum temperature and pH of immobilized enzymes was observed. In addition, K m values of free and entrapped glucoamylase were found to be almost identical, while the covalently immobilized enzyme shows the lowest affinity for substrate. In accordance, V m value of covalently immobilized enzyme was found lowest among free and immobilized counter parts. On the other hand, the retained activity of covalently immobilized glucoamylase has been improved and was found higher than that of entrapped one. Finally, the industrial applicability of covalently immobilized glucoamylase has been investigated through monitoring both shelf and operational stability characters. The covalently immobilized enzyme kept its activity over 36 days of shelf storage and after 30 repeated use runs. Drying the catalytic beads greatly reduced its activity in the beginning but recovered its lost part during use. In general, the newly developed affinity covalent immobilization technique of glucoamylase onto ρ-benzoquinone-activated alginate carrier is simple yet effective and could be used for the immobilization of some other enzymes especially amylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gerhartz, W. (1990). General production methods. In W. Gerhartz (Ed.) Enzymes in industry (p. 67). New York: VCH.

  2. Shankar, V., Nehete, P. N., & Kothari, R. M. (1993). Indian Journal of Biochemistry & Biophysics, 30, 62–70.

    CAS  Google Scholar 

  3. Ida, J., Matsuyama, T., & Yamamoto, H. (2000). Biochemical Engineering Journal, 5, 179–182.

    Article  CAS  Google Scholar 

  4. J-T, Oh, & Kim, J.-H. (2000). Enzyme and Microbial Technology, 27, 356–361.

    Article  Google Scholar 

  5. Bahar, T., & Celebi, S. S. (2000). Enzyme and Microbial Technology, 26, 28–33.

    Article  CAS  Google Scholar 

  6. Bahar, T., & Celebi, S. S. (1998). Enzyme and Microbial Technology, 23, 301–304.

    Article  CAS  Google Scholar 

  7. Tanaka, H., Kurosawa, H., Kokufuta, E., & Veliky, I. A. (1984). Biotechnology and Bioengineering, 26, 1393–1399.

    Article  CAS  Google Scholar 

  8. Tanriseven, A., Bozkurt Uluda, Y., & Dogan, S. (2002). Enzyme and Microbial Technology, 30, 406–409.

    Article  CAS  Google Scholar 

  9. Mohy Eldin, M. S., Hassan, E. A., & Elaassar, M. R. (2005). Deutsch lebensmittel Rundschau, 101, 255–259.

    CAS  Google Scholar 

  10. Mohy Eldin, M. S. (2005). Deutsch lebensmittel Rundschau, 101, 309–314.

    CAS  Google Scholar 

  11. Lee, P. M., Lee, K. H., & Siaw, Y. S. (1993). Journal of Chemical Technology and Biotechnology, 58, 65–70.

    CAS  Google Scholar 

  12. Li, T., Wang, N., Li, S., Zhao, Q., & Guo, M. (2007). Biotechnological Letters, 29, 1410–1416.

    Google Scholar 

  13. Teotia, S., Lata, R., Khare, S. K., & Gupta, M. N. (2001). Journal of Molecular Recognition, 14, 295–299.

    Article  CAS  Google Scholar 

  14. Silva, R. N., Asquieri, E. R., & Fernandes, K. F. (2005). Process Biochemistry, 40, 1155–1159.

    Article  CAS  Google Scholar 

  15. Rebros, M., Resenberg, M., Milchova, Z., Kristofikova, L., & Paulch, M. (2006). Enzyme and Microbial Technology, 39, 800–804.

    Article  CAS  Google Scholar 

  16. Park, D., Haam, S., Jang, K., Ahn, I., & Kim, W. (2005). Process Biochemistry, 40, 53–61.

    Article  CAS  Google Scholar 

  17. Tanriseven, A., & Olcer, Z. (2008). Biotechnology and Bioengineering Journal, 39, 430–434.

    CAS  Google Scholar 

  18. Serour, E., & Antranikian, G. (2002). Antonie van Leeuwenhoek, 81, 73–83.

    Article  CAS  Google Scholar 

  19. Arica, M. Y., Alaeddinoglu, N. G., & Hasirci Enzyme, V. (1998). Microbial Technology, 22, 152–157.

    Article  CAS  Google Scholar 

  20. Sanjay, G., & Sugunan, S. (2005). Catalysts Community, 6, 525–530.

    Article  CAS  Google Scholar 

  21. Silva, R. N., Asquieri, E. R., & Fernández, K. F. (2005). Proceedings of Biochemistry, 40, 1155–1159.

    Article  CAS  Google Scholar 

  22. Bai, Y., Li, Y., & Wang, M. (2006). Enzyme and Microbial Technology, 39, 540–547.

    Article  CAS  Google Scholar 

  23. Czichocki, G., Dautzenberg, H., Capan, E., & Vorlop, K. (2001). Biotechnological Letters, 23, 1303–1307.

    Article  CAS  Google Scholar 

  24. Dudra, A. H., Bryjak, J., & Trochimczuk, A. W. (2007). Enzyme and Microbial Technology, 41, 197–204.

    Article  Google Scholar 

  25. Bryjak, J. (2003). Biochemical Engineering Journal, 16, 347–355.

    Article  CAS  Google Scholar 

  26. Uhlich, T., Ulbricht, M., & Tomaschewski, G. (1996). Enzyme and Microbial Technology, 19, 124–131.

    Article  CAS  Google Scholar 

  27. Arica, M. Y., Handan, Y., Patir, S., & Denizli, A. (2000). Journal of Molecular Catalysis. B, Enzymatic, 11, 127–138.

    Article  CAS  Google Scholar 

  28. D’Souza, S. F., & Kubal, B. S. (2002). Journal of Biochemical and Biophysical Methods, 51, 151–159.

    Article  Google Scholar 

  29. Milosavic, N., Prodanvic, R., Jovanovic, S., & Vujcic, Z. (2007). Enzyme and Microbial Technology, 40, 1422–1426.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mohy Eldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldin, M.S.M., Seuror, E.I., Nasr, M.A. et al. Affinity Covalent Immobilization of Glucoamylase onto ρ-Benzoquinone-Activated Alginate Beads: II. Enzyme Immobilization and Characterization. Appl Biochem Biotechnol 164, 45–57 (2011). https://doi.org/10.1007/s12010-010-9113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9113-y

Keywords

Navigation