Advertisement

Applied Biochemistry and Biotechnology

, Volume 164, Issue 1, pp 34–44 | Cite as

Triggering of the Antibacterial Activity of Bacillus subtilis B38 Strain against Methicillin-Resistant Staphylococcus aureus

  • Olfa Tabbene
  • Ines Karkouch
  • Imen Ben Slimene
  • Najib Elfeddy
  • Pascal Cosette
  • Maria-Luisa Mangoni
  • Thierry Jouenne
  • Ferid LimamEmail author
Article

Abstract

When cultured in minimal growth medium, the B38 strain of Bacillus subtilis did not exhibit any antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolate. Coculturing B38 strain with viable MRSA cells weakly increased antibacterial activity production (20 AU/ml). Addition of dead MRSA cells in a B38 culture, increased by 8-fold the B. subtilis strain antibacterial activity reaching 160 AU/ml against MRSA strain. This antibacterial activity recovered from cell-free supernatants was stimulated by an autoinducing compound which is sensitive to the action of proteinase K suggesting a proteinaceous nature. This compound was heat-stable till 80 °C and showed a molecular mass around 20 kDa as determined by SDS-PAGE. These results suggest that the production of antibacterial compounds by B38 strain is dependent on the amount of the autoinducing compound.

Keywords

Antibacterial activity Autoinducing compound Induction MRSA Bacillus subtilis 

Notes

Acknowledgements

This work was supported by grants from the “Ministère de l’Enseignement Supérieur et de la Recherche Scientifique” of Tunisia. We thank Prof. E. Aouani for valuable discussion and critical reading of the manuscript and Prof. E. Ben Hassen for providing our laboratory with clinical isolates of Staphylococcus strains.

References

  1. 1.
    Mearns-Spragg, A., Bregu, M., Boyd, K. G., & Burgess, J. G. (1998). Letters in Applied Microbiology, 27, 142–146.CrossRefGoogle Scholar
  2. 2.
    Maldonado, A., Ruiz-Barba, J. L., & Jimenez-Diaz, R. (2004). Archives of Microbiology, 181, 8–16.CrossRefGoogle Scholar
  3. 3.
    Trischman, J. A., Oeffner, R. E., De Luna, M. G., & Kazaoka, M. (2004). Marine Biotechnology, 6, 215–220.CrossRefGoogle Scholar
  4. 4.
    Rojo-Bezares, B., Sáenz, Y., Navarro, L., Zarazaga, M., Ruiz-Larrea, F., & Torres, C. (2007). Food Microbiology, 24, 482–491.CrossRefGoogle Scholar
  5. 5.
    Kanagasabhapathy, M., & Nagata, S. (2008). World Journal of Microbiology & Biotechnology, 24, 687–691.CrossRefGoogle Scholar
  6. 6.
    Maldonado, A., Jimenez-Diaz, R., & Ruiz-Barba, J. L. (2004). Journal of Bacteriology, 186, 1556–1564.CrossRefGoogle Scholar
  7. 7.
    Maldonado, A., Ruiz-Barba, J. L., & Jimenez-Diaz, R. (2003). Applied and Environmental Microbiology, 69, 383–389.CrossRefGoogle Scholar
  8. 8.
    Diep, D. B., Håvarstein, L. S., & Nes, I. F. (1995). Molecular Microbiology, 18, 631–639.CrossRefGoogle Scholar
  9. 9.
    Brurberg, M. B., Nes, I. F., & Eijsink, V. G. H. (1997). Molecular Microbiology, 26, 347–360.CrossRefGoogle Scholar
  10. 10.
    Diep, D. B., Axelsson, L., Grefsli, C., & Nes, I. F. (2000). Microbiology, 146, 2155–2160.Google Scholar
  11. 11.
    Quadri, L. E. N. (2002). Antonie van Leeuwenhoek, 82, 133–145.CrossRefGoogle Scholar
  12. 12.
    Sturme, M. H. J., Kleerebezem, M., Nakayama, J., Akkermans, A. D. L., Vaughan, E. E., & De Vos, W. M. (2002). Antonie van Leeuwenhoek, 81, 233–243.CrossRefGoogle Scholar
  13. 13.
    Kotelnikova, E. A., & Gelfand, M. S. (2002). Russian Journal of Genetics, 38, 628–641.CrossRefGoogle Scholar
  14. 14.
    Demain, A. L. (1998). International Microbiology, 1, 259–264.Google Scholar
  15. 15.
    Tabbene, O., Ben Slimene, I., Bouabdallah, F., Mangoni, M. L., Urdaci, M. C., & Limam, F. (2009). Applied Biochemistry and Biotechnology, 157, 407–419.CrossRefGoogle Scholar
  16. 16.
    Tabbene, O., Ben Slimene, I., Djebali, K., Mangoni, M. L., Urdaci, M. C., & Limam, F. (2009). Biotechnology Progress, 25, 1267–1274.CrossRefGoogle Scholar
  17. 17.
    Hyronimus, B., Le Marrec, C., & Urdaci, M. C. (1998). Journal of Applied Microbiology, 85, 42–50.CrossRefGoogle Scholar
  18. 18.
    Furtado, N. A. J. C., Said, S., Ito, I. Y., & Bastos, J. K. (2002). Microbiological Research, 157, 207–211.CrossRefGoogle Scholar
  19. 19.
    Schägger, H., & Jagow, G. V. (1987). Analytical Biochemistry, 166, 368–379.CrossRefGoogle Scholar
  20. 20.
    Blum, H., Beier, H., & Gross, H. J. (1987). Electrophoresis, 8, 93–99.CrossRefGoogle Scholar
  21. 21.
    Kleerebezem, M., & Quadri, L. E. (2001). Peptides, 22, 1579–1596.CrossRefGoogle Scholar
  22. 22.
    Quadri, L. E. N. (2003). Journal of Microbiology, 41, 175–182.Google Scholar
  23. 23.
    Kleerebezm, O., Kuipers, O. P., De Vos, W. M., Stiles, M. E., & Quadri, L. E. N. (2001). Peptides, 22, 1597–1601.CrossRefGoogle Scholar
  24. 24.
    Fourati-Ben Fguira, L., Smaoui, S., Karray-Rebai, I., Bejar, S., & Mellouli, L. (2008). Biotechnology Journal, 3, 1–9.CrossRefGoogle Scholar
  25. 25.
    Eijsink, V. G. H., Brurberg, M. B., Middelhoven, P. H., & Nes, I. F. (1996). Journal of Bacteriology, 178, 2232–2237.Google Scholar
  26. 26.
    Gursky, L. J., Martin, N. I., Derksen, D. J., Van Belkum, M. J., Kaur, K., Vederas, J. C., et al. (2006). Archives of Microbiology, 186, 317–325.CrossRefGoogle Scholar
  27. 27.
    Nilsen, T., Nes, I. F., & Holo, H. (1998). Journal of Bacteriology, 180, 1848–1854.Google Scholar
  28. 28.
    O’Keeffe, T., Hill, C., & Ross, R. P. (1999). Applied and Environmental Microbiology, 65, 1506–1515.Google Scholar
  29. 29.
    Kleerebezem, M. (2004). Peptides, 25, 1405–1414.CrossRefGoogle Scholar
  30. 30.
    Tortosa, P., & Dubnau, D. (1999). Current Opinion in Microbiology, 2, 588–592.CrossRefGoogle Scholar
  31. 31.
    Cheng, Q., Campbell, E. A., Naughton, A. M., Johnson, S., & Masure, H. R. (1997). Molecular Microbiology, 23, 683–692.CrossRefGoogle Scholar
  32. 32.
    Frees, D., Sørensen, K., & Ingmer, H. (2005). Infection and Immunity, 73, 8100–8108.CrossRefGoogle Scholar
  33. 33.
    Ansaldi, M., & Dubnau, D. (2004). Journal of Bacteriology, 186, 15–21.CrossRefGoogle Scholar
  34. 34.
    Shpakov, A. O. (2009). Microbiology, 78, 255–266.CrossRefGoogle Scholar
  35. 35.
    Cosby, W. M., Vollenbroich, D., Lee, O. H., & Zuber, P. (1998). Journal of Bacteriology, 180, 1438–1445.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Olfa Tabbene
    • 1
  • Ines Karkouch
    • 1
  • Imen Ben Slimene
    • 1
  • Najib Elfeddy
    • 2
  • Pascal Cosette
    • 3
  • Maria-Luisa Mangoni
    • 4
  • Thierry Jouenne
    • 3
  • Ferid Limam
    • 1
    Email author
  1. 1.Laboratoire des Substances BioactivesCentre de Biotechnologie de Borj-CedriaHammam-lif CedexTunisia
  2. 2.Unité de Recherche Agro-BiotechnologieLaboratoire Phytobactériologie, INRAMarrakechMorocco
  3. 3.UMR 6270 CNRS, Faculté des SciencesUniversité de RouenMont Saint Aignan CedexFrance
  4. 4.Dipartimento di Scienze BiochimicheUniversità La SapienzaRomeItaly

Personalised recommendations