Advertisement

Applied Biochemistry and Biotechnology

, Volume 164, Issue 1, pp 23–33 | Cite as

Hydrolytic Enzyme of Cellulose for Complex Formulation Applied Research

  • Zeng-Xiang Lin
  • Hong-Man Zhang
  • Xiao-Jun Ji
  • Jing-Wen Chen
  • He HuangEmail author
Article

Abstract

To improve the enzymatic hydrolytic efficiency and reduce the supplementation of enzymes, the mixture designed experimental approach was used to optimize the composition of enzyme mixture and promote the hydrolysis of ball-milled corn stover. From the experimental results, a synergistic effect was found when combinations of the three enzymes, two kinds of cellulases and a kind of xylanase, were used. The optimal hydrolysis of pretreated corn stover accorded with enzymes activity ration of FPU/CMCase/β-glucosidase/xylanase = 4.4:1:75:829, and the hydrolysis efficiency of corn stover increased significantly compared with using individual enzyme. The results indicated that the mixture design experiment could be an effective tool for optimized enzyme mixture for lignocellulose hydrolysis.

Keywords

Experimental mixture design Cellulose Complex formulation Cellulase Xylanase 

Notes

Acknowledgements

This work was financially supported by China Petroleum & Chemical Corporation (No. 207035), National Natural Science Foundation of China (No. 20876078), the Key Program of National Natural Science Foundation of China (No. 20936002), United Foundation of NSFC and Guangdong Province (No. U0733001), National Hi-tech Research and Development Program of China (No. 2009AA02Z08) and National Basic Research Program of China (No. 2007CB707805).

References

  1. 1.
    Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., et al. (2006). The path forward for biofuels and biomaterials. Science, 311(27), 484–489.CrossRefGoogle Scholar
  2. 2.
    Imai, M., Ikari, K., & Suzuki, I. (2004). High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochemical Engineering Journal, 17(2), 79–83.CrossRefGoogle Scholar
  3. 3.
    Tengerdy, R. P., & Szakacs, G. (2003). Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal, 13(2–3), 169–179.CrossRefGoogle Scholar
  4. 4.
    Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.CrossRefGoogle Scholar
  5. 5.
    Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–807.CrossRefGoogle Scholar
  6. 6.
    Han, Y., & Chen, H. (2010). Synergism between hydrophobic proteins of corn stover and cellulase in lignocellulose hydrolysis. Biochemical Engineering Journal, 48(2), 218–224.CrossRefGoogle Scholar
  7. 7.
    Fujii, M., Mori, J. I., Homma, T., & Taniguchi, M. (1995). Synergy between an endoglucanase and cellobiohydrolases from Trichoderma koningii. The Chemical Engineering Journal and the Biochemical Engineering Journal, 59(3), 315–319.CrossRefGoogle Scholar
  8. 8.
    Tabka, M. G., Herpoel-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39(4), 897–902.CrossRefGoogle Scholar
  9. 9.
    Öhgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503–2510.CrossRefGoogle Scholar
  10. 10.
    Gan, Q., Allen, S. J., & Taylor, G. (2002). Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis. Biochemical Engineering Journal, 12(3), 223–229.CrossRefGoogle Scholar
  11. 11.
    Zhang, M. J., Su, R. X., Qi, W., & He, Z. M. (2010). Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Applied Biochemistry and Biotechnology, 160(5), 1407–1414.CrossRefGoogle Scholar
  12. 12.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.CrossRefGoogle Scholar
  13. 13.
    Tu, M., & Saddler, J. N. (2010). Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Applied Biochemistry and Biotechnology, 161(1–8), 274–287.CrossRefGoogle Scholar
  14. 14.
    Zhou, J., Wang, Y.-H., Chu, J., Luo, L.-Z., Zhuang, Y.-P., & Zhang, S.-L. (2009). Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresource Technology, 100(2), 819–825.CrossRefGoogle Scholar
  15. 15.
    Nidetzky, B., Steiner, W., Hayn, M., & Claeyssens, M. (1994). Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochemical Journal, 298, 705–710.Google Scholar
  16. 16.
    Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., et al. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(2), 214–223.CrossRefGoogle Scholar
  17. 17.
    Baker, J. O., Ehrman, C. I., Adney, W. S., Thomas, S. R., & Himmel, M. E. (1998). Hydrolysis of cellulose using ternary mixtures of purified cellulases. Applied Biochemistry and Biotechnology, 70–72, 395–403.CrossRefGoogle Scholar
  18. 18.
    Selig, M. J., Knoshaug, E. P., Adney, W. S., Himmel, M. E., & Decker, S. R. (2008). Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresource Technology, 99(11), 4997–5005.CrossRefGoogle Scholar
  19. 19.
    Mais, U., Esteghlalian, A. R., Saddler, J. N., & Mansfield, S. D. (2002). Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology, 98, 815–832.CrossRefGoogle Scholar
  20. 20.
    Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., et al. (2007). Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 97(5), 1028–1038.CrossRefGoogle Scholar
  21. 21.
    Irwin, D. C., Spezio, M., Walker, L. P., & Wilson, D. B. (1993). Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects. Biotechnology and Bioengineering, 42(8), 1002–1013.CrossRefGoogle Scholar
  22. 22.
    Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering, 97, 287–296.CrossRefGoogle Scholar
  23. 23.
    Rispoli, F. J., & Shah, V. (2007). Mixture design as a first step for optimization of fermentation medium for cutinase production from Colletotrichum lindemuthianum. Journal of Industrial Microbiology & Biotechnology, 34(5), 349–355.CrossRefGoogle Scholar
  24. 24.
    Navarrete-Bolanos, J. L., Jimenez-Islas, H., Botello-Alvarez, E., & Rico-Martinez, R. (2003). Mixed culture optimization for marigold flower ensilage via experimental design and response surface methodology. Journal of Agricultural and Food Chemistry, 51(8), 2206–2211.CrossRefGoogle Scholar
  25. 25.
    Lin, Z., Huang, H., Zhang, H., Yan, L., Chen, J., Jin, Q., et al. (2009). Optimization of process parameters of ball milling pretreatment of corn stalk. Transactions of the Chinese Society of Agricultural Engineering, 25(3), 202–204.Google Scholar
  26. 26.
    Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162, 1872–1880.CrossRefGoogle Scholar
  27. 27.
    NREL. National Renewable Energy Laboratory standard methods of Laboratory Analytical Procedure (LAP) (2009). Available from: < http://www.nrel.gov/biomass/analytical_procedures.html >
  28. 28.
    Han, Y., & Chen, H. (2007). Synergism between corn stover protein and cellulase. Enzyme and Microbial Technology, 41(5), 638–645.CrossRefGoogle Scholar
  29. 29.
    Kumar, R., & Wyman, C. E. (2009). Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresource Technology, 100(18), 4203–4213.CrossRefGoogle Scholar
  30. 30.
    Jing, D. B., Li, P. J., Xiong, X. Z., & Wang, L. H. (2007). Optimization of cellulase complex formulation for peashrub biomass hydrolysis. Applied Microbiology and Biotechnology, 75(4), 793–800.CrossRefGoogle Scholar
  31. 31.
    Ohgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503–2510.CrossRefGoogle Scholar
  32. 32.
    Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics, 9, 433–443.CrossRefGoogle Scholar
  33. 33.
    Sanchez, M. M., Irwin, D. C., Pastor, F. I. J., Wilson, D. B., & Diaz, P. (2004). Synergistic activity of Paenibacillus sp BP-23 cellobiohydrolase Ce148C in association with the contiguous endoglucanase Ce19B and with endoor exo-acting glucanases from Thermobifida fusca. Biotechnology and Bioengineering, 87(2), 161–169.CrossRefGoogle Scholar
  34. 34.
    Yang, Q., Luo, K., Li, X.-M., Wang, D.-B., Zheng, W., Zeng, G.-M., et al. (2010). Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology, 101(9), 2924–2930.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zeng-Xiang Lin
    • 1
  • Hong-Man Zhang
    • 2
  • Xiao-Jun Ji
    • 1
  • Jing-Wen Chen
    • 1
  • He Huang
    • 1
    Email author
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China
  2. 2.Department of Applied ChemistryNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations