Advertisement

Applied Biochemistry and Biotechnology

, Volume 164, Issue 1, pp 10–22 | Cite as

Affinity Covalent Immobilization of Glucoamylase onto ρ-Benzoquinone Activated Alginate Beads: I. Beads Preparation and Characterization

  • M. S. Mohy EldinEmail author
  • E. I. Seuror
  • M. A. Nasr
  • M. R. El-Aassar
  • H. A. Tieama
Article

Abstract

ρ-Benzoquinone-activated alginate beads were presented as a new carrier for affinity covalent immobilization of glucoamylase enzyme. Evidences of alginate modification were extracted from FT-IR and thermal gravimetric analysis and supported by morphological changes recognized through SEM examination. Factors affecting the modification process such as ρ-benzoquinone (PBQ) concentration, reaction time, reaction temperature, reaction pH and finally alginate concentration, have been studied. Its influence on the amount of coupled PBQ was consequently correlated to the changes of the catalytic activity and the retained activity of immobilized enzyme, the main parameters judging the success of the immobilization process. The immobilized glucoamylase was found kept almost 80% of its native activity giving proof of non-significant substrate, starch, diffusion limitation. The proposed affinity covalent immobilizing technique would rank among the potential strategies for efficient immobilization of glucoamylase enzyme.

Keywords

Covalent immobilization p-Benzoquinone Alginate Glucoamylase Affinity 

References

  1. 1.
    Loska, J., Wlodarczyk, W., & Zaborska, J. (1999). Journal of Molecular Catalysis. B, Enzymatic, 6, 549–553.CrossRefGoogle Scholar
  2. 2.
    Arica, M. Y., & Alaeddinoglu, N. G. V. (1998). Enzyme and Microbial Technology, 22, 152–157.CrossRefGoogle Scholar
  3. 3.
    Arica, M. Y., Handan, Y., Patir, S., & Denizli, A. (2000). Journal of Molecular Catalysis. B, Enzymatic, 11, 127–138.CrossRefGoogle Scholar
  4. 4.
    Arica, M. Y., Hasirci, V., & Alaeddinogˇlu, N. G. (1995). Biomaterials, 16, 761.CrossRefGoogle Scholar
  5. 5.
    Aksoy, S., Tümtürk, H., & Hasirci, N. (1998). Journal of Biotechnology, 60, 37.CrossRefGoogle Scholar
  6. 6.
    Crabb, W. D., & Mitchinson, C. (1997). Trends in Biotechnology, 15, 349–352.CrossRefGoogle Scholar
  7. 7.
    Silva, R. N., Asquieri, E. R., & Fernandes, K. F. (2005). Process Biochemistry, 40, 1155–1159.CrossRefGoogle Scholar
  8. 8.
    Tanriseven, A., Bozkurt Uluda, Y., & Dogan, S. (2002). Enzyme and Microbial Technology, 30, 406–409.CrossRefGoogle Scholar
  9. 9.
    Bahar, T., & Celebi, S. S. (1998). Enzyme and Microbial Technology, 23, 301–304.CrossRefGoogle Scholar
  10. 10.
    Yajima, H., Hirose, A., Ishii, T., Ohsawa, T., & Endo, R. (1989). Biotechnology and Bioengineering, 33, 795–798.CrossRefGoogle Scholar
  11. 11.
    Oh, J. T., & Kim, J. H. (2000). Enzyme and Microbial Technology, 27, 356–366.CrossRefGoogle Scholar
  12. 12.
    Tanaka, A. (1996). Bioscience, Biotechnology, and Biochemistry, 60, 2055–2058.CrossRefGoogle Scholar
  13. 13.
    Tanaka, H., Kurosawa, H., Kokufuta, E., & Veliky, I. A. (1984). Biotechnology and Bioengineering, 26, 1393–1399.CrossRefGoogle Scholar
  14. 14.
    Katchalski-Katzir, E. (1993). Trends in Biotechnology, 11, 471–478.CrossRefGoogle Scholar
  15. 15.
    Chibata, I., Tosa, T., & Sato, T. (1986). Journal of Molecular Catalysis. B, Enzymatic, 37, 1–24.Google Scholar
  16. 16.
    Hong, J., Xu, D., Gong, P., Yu, J., Ma, H., & Yao, S. (2008). Microporous and Mesoporous Materials, 109, 470–477.CrossRefGoogle Scholar
  17. 17.
    Li, Z. F., Kang, E. T., Neoh, K. G., & Tan, K. L. (1998). Biomaterials, 19, 45–53.CrossRefGoogle Scholar
  18. 18.
    Liu, C., Kuwahara, T., Yamazaki, R., & Shimomura, M. (2000). European Polymer Journal, 36, 2095–2103.CrossRefGoogle Scholar
  19. 19.
    Ying, L., Kang, E. T., & Neoh, K. G. (2002). Journal of Membrane Science, 208, 361–374.CrossRefGoogle Scholar
  20. 20.
    Liu, C., Kuwahara, T., Yamazaki, R., & Shimomura, M. (2007). European Polymer Journal, 43, 3264–3276.CrossRefGoogle Scholar
  21. 21.
    Mohy Eldin, M. S. (2005). Deutsch lebensmittel-Rundschau, 101, 193–198.Google Scholar
  22. 22.
    Mohy Eldin, M. S., Hassan, E. A., & Elaassar, M. R. (2005). Deutsch lebensmittel-Rundschau, 101, 255–259.Google Scholar
  23. 23.
    Mohy Eldin, M. S. (2005). Deutsch lebensmittel-Rundschau, 101, 309–314.Google Scholar
  24. 24.
    Schroën, C. G. P. H., Mohy Eldin, M. S., Janssen, A. E. M., Mita, G. D., & Tramper, J. (2001). Journal of Molecular Catalysis. B, Enzymatic, 15, 163–172.CrossRefGoogle Scholar
  25. 25.
    Mohy Eldin, M. S., Bencivenga, U., Rossi, S., Canciglia, P., Gaeta, F. S., Tramper, J., et al. (2000). Journal of Molecular Catalysis. B, Enzymatic, 8, 233–244.CrossRefGoogle Scholar
  26. 26.
    Rosell, G. M., Fernandez-Lafuente, R., & Jusian, J. M. (1995). Biocatalysis and Biotransformation, 12, 67–76.CrossRefGoogle Scholar
  27. 27.
    Blanco, R. M., & Jusian, J. M. (1989). Enzyme and Microbial Technology, 11, 360–366.CrossRefGoogle Scholar
  28. 28.
    Sardar, M., & Gupta, M. N. (1998). Bioseparation, 7, 159–165.CrossRefGoogle Scholar
  29. 29.
    Sharma, A., Sharma, S., & Gupta, M. N. (2000). Protein Expression and Purification, 18, 111–114.CrossRefGoogle Scholar
  30. 30.
    Roy, I., Sastry, M. S. R., Johri, B. N., & Gupta, M. N. (2000). Protein Expression and Purification, 20, 162–168.CrossRefGoogle Scholar
  31. 31.
    Lee, P. M., Lee, K. H., & Siaw, Y. S. (1993). Journal of Chemical Technology and Biotechnology, 58, 65–70.Google Scholar
  32. 32.
    Li, T., Wang, N., Li, S., Zhao, Q., & Guo, M. (2007). Biotechnological Letters, 29, 1411–1416.Google Scholar
  33. 33.
    Teotia, S., Lata, R., Khare, S. K., & Gupta, M. N. (2001). Journal of Molecular Recognition, 14, 295–299.CrossRefGoogle Scholar
  34. 34.
    Serour, E., & Antranikian, G. (2002). Antonie van Leeuwenhoek, 81, 73–83.CrossRefGoogle Scholar
  35. 35.
    Sanjay, G., & Sugunan, S. (2005). Cataly Comuna, 6, 525–530.CrossRefGoogle Scholar
  36. 36.
    deOlive iraa, A. N., de Santanaa, H., Zaiab, C. T. B. V., & Zaiaa, D. A. M. (2004). Journal of Food Composition and Analysis, 17, 165–177.CrossRefGoogle Scholar
  37. 37.
    Kalman, M., Szajani, B., & Boross, L. (1983). Applied Biochemistry and Biotechnology, 8, 515–522.CrossRefGoogle Scholar
  38. 38.
    Chun, M., Dickopp, G., & Sernetz, M. (1980). Journal of Solid-Phase Biochemistry, 5, 211–221.CrossRefGoogle Scholar
  39. 39.
    Rebroˇs, M., Rosenberg, M., Mlichová, Z., Krištofíkovš, L., & Paluch, M. (2006). Enzyme and Microbial Technology, 39, 800–804.CrossRefGoogle Scholar
  40. 40.
    Dhar, G. M., Mitsutomi, M., & Ohtakara, A. (1993). Bulletin of the Faculty of Agriculture, Saga University, 74, 59–68.Google Scholar
  41. 41.
    Mateescu, M., Weltrowska, G., Agostinelli, E., Saint-Andre, R., Weltrowski, M., & Mondovi, B. (1989). Biotechnology Techniques, 3, 415–420.CrossRefGoogle Scholar
  42. 42.
    Sanjay, G., & Sugunan, S. (2005). Catalysis Communications, 6, 525–530.CrossRefGoogle Scholar
  43. 43.
    Park, D., Haam, S., Jang, K., Ahn, Ik, & Kim, W. (2005). Process Biochemistry, 40, 53–61.CrossRefGoogle Scholar
  44. 44.
    Mohy Eldin, M. S., Soliman, E. A., Hashem, A. I., & Tamer, T. M. (2008). Trends in Biomaterials and Artificial Organs, 22, 154–164.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. S. Mohy Eldin
    • 1
    Email author
  • E. I. Seuror
    • 3
  • M. A. Nasr
    • 2
  • M. R. El-Aassar
    • 1
  • H. A. Tieama
    • 1
  1. 1.Polymer Materials Research Department, Advanced Technologies and New Material Research InstituteMubarak City for Scientific Research and Technology ApplicationsNew Borg El-Arab CityAlexandriaEgypt
  2. 2.Department of Chemistry, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  3. 3.Protein Research Department, Genetic Engineering and Biotechnology Research InstituteMubarak City for Scientific Research and Technology ApplicationsNew Borg El-Arab CityAlexandriaEgypt

Personalised recommendations