Skip to main content
Log in

Increased In Vitro Lysosomal Function in Oxidative Stress-Induced Cell Lines

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exposure of mammalian cells to oxidative stress alters lysosomal enzymes. Through cytochemical analysis of lysosomes with LysoTracker, we demonstrated that the number and fluorescent intensity of lysosome-like organelles in HeLa cells increased with exposure to hydrogen peroxide (H2O2), 6-hydroxydopamine (6-OHDA), and UVB irradiation. The lysosomes isolated from HeLa cells exposed to three oxidative stressors showed the enhanced antimicrobial activity against Escherichia coli. Further, when lysosomes that were isolated from HeLa cells exposed by oxidative stress were treated to normal HeLa cells, the viability of the HeLa cells was drastically reduced, suggesting increased in vitro lysosomal function (i.e., antimicrobial activity, apoptotic cell death). In addition, we also found that cathepsin B and D were implicated in increased in vitro lysosomal function when isolated from HeLa cells exposed by oxidative stress. Decrease in cathepsin B activity and increase in cathepsin D activity were observed in lysosomes isolated from HeLa cells after treatment with H2O2, 6-ODHA, or UVB, but cathepsin B and D were not the sole factors to induce cell death by in vitro lysosomal function. Therefore, these studies suggest a new approach to use lysosomes as antimicrobial agents and as new materials for treating cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kurz, T., Terman, A., & Brunt, U. T. (2007). Archives of Biochemistry and Biophysiology, 462, 220–230.

    Article  CAS  Google Scholar 

  2. Kurz, T., Terman, A., & Brunt, U. T. (2008). Biochimica et Biophysica Acta, 1780, 1291–1303.

    CAS  Google Scholar 

  3. Arsham, A. M., & Neufeld, T. P. (2009). PLoS ONE, 4, 1–13.

    Article  Google Scholar 

  4. Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J., & van Deurs, B. (2000). Molecular Biology of the Cell, 11, 467–480.

    CAS  Google Scholar 

  5. Pisoni, R. L., Acker, T. L., Lisowski, K. M., Lemons, R. M., & Thoene, J. G. (1990). The Journal of Cell Biology, 110, 327–325.

    Article  CAS  Google Scholar 

  6. Yoon, J., Park, J.-M., Jung, S.-K., Kim, K.-Y., Kim, K.-Y., & Min, J. (2009). Current Microbiology, 59, 48–52.

    Article  Google Scholar 

  7. Yoon, J., Park, J.-M., Kim, K.-J., Kim, Y.-H., & Min, J. (2009). Journal of Microbiology and Biotechnology, 19, 1364–1368.

    Article  Google Scholar 

  8. Gallis, H. A., Miller, S. E., & Wheat, R. W. (1976). Infection and Immunity, 13, 1459–1466.

    CAS  Google Scholar 

  9. Stimpson, S. A., Lerch, R. A., Cleland, D. R., Yarnall, D. P., Clark, R. L., Cromartie, W. J., et al. (1987). Infection and Immunity, 55, 16–23.

    CAS  Google Scholar 

  10. Zhao, M., Antunes, F., Eaton, J., & Brunk, U. T. (2003). European Journal of Biochemistry, 270, 3778–3786.

    Article  CAS  Google Scholar 

  11. Roberg, K., & Öllinger, K. (1998). The American Journal of Pathology, 152, 1151–1156.

    CAS  Google Scholar 

  12. Lee, D. C., Mason, C. W., Goodman, C. B., Holdder, M. S., Kirksey, O. W., Womble, T. A., et al. (2007). Neurochemical Research, 32, 1499–1510.

    Article  CAS  Google Scholar 

  13. Lee, D. C., Womble, T. A., Mason, C. W., Jackson, J. M., Lamango, N. S., Severs, W. B., et al. (2007). Neurochemistry International, 50, 607–618.

    Article  CAS  Google Scholar 

  14. Bosilevac, J. M., Olsen, R. J., Bridge, J. A., & Hinrichs, S. H. (1999). The Journal of Biological Chemistry, 274, 34811–34818.

    Article  CAS  Google Scholar 

  15. Nagaraj, N. S., Vingeswaran, N., & Zacharias, W. (2007). Apoptosis, 12, 125–139.

    Article  CAS  Google Scholar 

  16. Chung, H., Yoon, Y. H., Hwang, J. J., Cho, K. S., Koh, J. Y., & Kim, J. G. (2009). Toxicology and Applied Pharmacology, 235, 163–170.

    Article  CAS  Google Scholar 

  17. Chopra, V. S., Moozar, K. L., Mehindate, K., & Schipper, H. M. (1987). Experimental Neurology, 147, 221–228.

    Article  Google Scholar 

  18. Kågeldal, K., Johansson, U., & Öllinger, K. (2001). The FASEB Journal, 9, 1952–1954.

    Google Scholar 

  19. Cirman, T., Orešić, K., Mazovec, G. D., Turk, V., Reed, J. C., Myers, R. M., et al. (2004). The Journal of Biological Chemistry, 279, 3578–3587.

    Article  CAS  Google Scholar 

  20. Uchiyama, Y. (2001). Archives of Histology and Cytology, 64, 233–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Grant No. 11-2008-10-002-00, Ministry of Education, Science & Technology, Republic of Korea. The authors are grateful for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-Hoon Kim or Jiho Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, J., Bang, S.H., Park, JS. et al. Increased In Vitro Lysosomal Function in Oxidative Stress-Induced Cell Lines. Appl Biochem Biotechnol 163, 1002–1011 (2011). https://doi.org/10.1007/s12010-010-9104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9104-z

Keywords

Navigation