Skip to main content

Advertisement

Log in

Bioprocess Optimization of Furanocoumarin Elicitation by Medium Renewal and Re-elicitation: A Perfusion-Based Approach

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Effect of various abiotic (methyl jasmonate, salicylic acid) and biotic (yeast extract, Aspergillus niger) elicitors on furanocoumarin production and in situ product removal was studied using shoot cultures of Ruta graveolens L. Elicitation by yeast extract (1% w/v) on day 15 was most effective. It led to 7.8-fold higher furanocoumarin production that was attained 24 h after elicitation and 43% of the product was released into the medium. Changes in the relative concentration of furanocoumarins produced depend on the elicitor used. Molar ratio of bergapten increased to 93% in response to yeast extract. With the perspective of developing a commercially feasible process, an approach for preserving viability of biomass and its reuse needs to be developed. For this, medium renewal strategy was investigated. Removal of the spent medium 48 h after elicitation allowed in situ product removal and proved effective in revival of cultures, allowing reuse of biomass. A week after medium renewal, the revived biomass was re-elicited and a second furanocoumarin production peak was obtained. A perfusion-based bioprocess optimization approach, employing elicitation coupled with medium renewal with subsequent re-elicitation, as a new strategy for improved furanocoumarin production, has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Diwan, R., & Malpathak, N. (2007). In A. Kumar & S. Sopory (Eds.), In recent advances in plant biotechnology 11 (pp. 158–187). New Delhi, India: IK International.

    Google Scholar 

  2. Ekiert, H., Choloniewska, M., & Gomolka, E. (2001). Biotechnological Letters, 23, 543–545.

    Article  CAS  Google Scholar 

  3. Massot, B., Milesi, S., Gontier, E., Bourgaud, F., & Guckert, A. (2000). Plant Cell, Tissue and Organ Culture, 62, 11–19.

    Article  CAS  Google Scholar 

  4. Gontier, E., Piutti, S., Gravot, A., Milesi, S., Grabner, A., Massot, B., et al. (2005). In A. Hvoslef-Eide & W. Peril (Eds.), In liquid culture systems for in vitro plant propagation (pp. 509–524). Netherlands: Springer.

    Chapter  Google Scholar 

  5. Diwan, R., & Malpathak, N. (2008). New Biotechnology, 25(1), 85–91.

    Article  CAS  Google Scholar 

  6. Brader, G., Tas, E., & Palva, E. T. (2001). Plant Physiology, 126, 849–860.

    Article  CAS  Google Scholar 

  7. Wang, C., Wu, J., & Mei, X. (2001). Applied Microbiology and Biotechnology, 55, 404–410.

    Article  CAS  Google Scholar 

  8. Bolhmann, J., Gibraltarskaya, E., & Eilert, U. (1995). Plant Cell, Tissue and Organ Culture, 43, 155–161.

    Article  Google Scholar 

  9. Orlita, A., Sidwa-Gorycka, M., Malinski, E., Czerwicka, M., Kumirska, J., Golebiowski, M., et al. (2008). Biotechnological Letters, 30(3), 541–545.

    Article  CAS  Google Scholar 

  10. Orlita, A., Sidwa-Gorycka, M., Kumirska, J., Malinski, E., Siedlecka, E., Gajdus, J., et al. (2008). Biotechnology Progress, 24(1), 128–133.

    Article  CAS  Google Scholar 

  11. Orlita, A., Sidwa-Gorycka, M., Paszkiewicz, M., Malinski, E., Kumirska, J., Siedlecka, E. M., et al. (2008). Biotechnology and Applied Biochemistry, 51, 91–96.

    Article  CAS  Google Scholar 

  12. Wang, Y., Yuan, Y., & Wu, J. (2004). Biochemical Engineering Journal, 19, 259–265.

    Article  Google Scholar 

  13. Ali, M. B., Yu, K.-W., Hahn, E.-J., & Paek, K.-Y. (2006). Plant Cell Reports, 25, 613–620.

    Article  CAS  Google Scholar 

  14. Kang, S. M., Min, J. Y., Kim, Y. D., Kang, Y. M., Park, D. J., Jung, H. N., et al. (2006). In Vitro Cellular and Developmental Biology Plant, 42(1), 44–49.

    Article  CAS  Google Scholar 

  15. Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Khodakovskaya, M. P., Glazunov, S. V., Radchenko, S. V., et al. (2002). Journal of Biotechnology, 97, 213–221.

    Article  CAS  Google Scholar 

  16. Sánchez-Sampedro, A., Fernández-Tárrago, J., & Corchete, P. (2005). Journal of Biotechnology, 119(1), 60–69.

    Article  Google Scholar 

  17. Kitamura, Y., Ikenaga, T., Ooe, Y., Hiraoka, N., & Mizukami, H. (1998). Phytochemistry, 48(1), 113–117.

    Article  CAS  Google Scholar 

  18. Ishikawa, A., Kitamura, Y., Ozeki, Y., & Watanabe, M. (2007). Journal of Natural Medicines, 61(1), 30–37.

    Article  CAS  Google Scholar 

  19. Glowniak, K., Dragan, T., Zgórka, G., & Gawron, A. (1994). Acta Horticulturae, 381, 600–604.

    CAS  Google Scholar 

  20. Wu, J., Wang, G., & Mei, X. (2001). Journal of Biotechnology, 85(1), 67–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by University Grants Commission (UGC), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutan Malpathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diwan, R., Malpathak, N. Bioprocess Optimization of Furanocoumarin Elicitation by Medium Renewal and Re-elicitation: A Perfusion-Based Approach. Appl Biochem Biotechnol 163, 756–764 (2011). https://doi.org/10.1007/s12010-010-9080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9080-3

Keywords

Navigation