Skip to main content
Log in

Enhanced Production of l-Arginine by Expression of Vitreoscilla Hemoglobin Using a Novel Expression System in Corynebacterium crenatum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium crenatum SYPA 5-5 is an aerobic and industrial l-arginine producer. It was proved that the Corynebacterium glutamicum/Escherichia coli shuttle vector pJC1 could be extended in C. crenatum efficiently when using the chloramphenicol acetyltransferase gene (cat) as a reporter under the control of promoter tac. The expression system was applied to over-express the gene vgb coding Vitreoscilla hemoglobin (VHb) to further increase the dissolved oxygen in C. crenatum. As a result, the recombinant C. crenatum containing the pJC-tac-vgb plasmid expressed VHb at a level of 3.4 nmol g−1, and the oxygen uptake rates reached 0.25 mg A −1562  h−1 which enhanced 38.8% compared to the wild-type strain. Thus, the final l-arginine concentration of the batch fermentation reached a high level of 35.9 g L−1, and the biomass was largely increased to 6.45 g L−1, which were 17.3% and 10.5% higher than those obtained by the wild-type strain, respectively. To our knowledge, this is the first report that the efficient expression system was constructed to introduce vgb gene increasing the oxygen and energy supply for l-arginine production in C. crenatum, which supplies a good strategy for the improvement of amino acid products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ikeda, M. (2003). Advances in Biochemical Engineering/Biotechnology, 79, 1–35.

    Article  CAS  Google Scholar 

  2. Böger, R. H., Bode-Böger, S. M., & Frölich, J. C. (1996). Atherosclerosis, 127, 1–11.

    Article  Google Scholar 

  3. Utagawa, T. (2004). The Journal of Nutrition, 134, 2854–2867.

    Google Scholar 

  4. Lu, C. D. (2006). Applied Microbiology and Biotechnology, 70, 261–272.

    Article  CAS  Google Scholar 

  5. Ikeda, M., Mitsuhashi, S., Tanaka, K., & Hayashi, M. (2009). Applied and Environmental Microbiology, 75, 1635–1641.

    Article  CAS  Google Scholar 

  6. Caldara, M., Dupont, G., Leroy, F., Goldbeter, A., De Vuyst, L., & Cunin, R. (2008). The Journal of Biological Chemistry, 283, 6347–6358.

    Article  CAS  Google Scholar 

  7. Ikeda, M., & Nakagawa, S. (2003). Applied Microbiology and Biotechnology, 62, 99–109.

    Article  CAS  Google Scholar 

  8. Hirose, Y., & Shibai, H. (1980). Biotechnology and Bioengineering, 22, 111–125.

    CAS  Google Scholar 

  9. Hua, Q., Fu, P. C., Yang, C., & Shimizu, K. (1998). Biochemical Engineering Journal, 2, 89–100.

    Article  CAS  Google Scholar 

  10. Ensari, S., & Kim, J. H. (2003). Biotechnology Progress, 19, 1387–1390.

    Article  CAS  Google Scholar 

  11. Akashi, K., Shibai, H., & Hirose, Y. (1979). Journal of Fermentation Technology, 57, 317–320.

    CAS  Google Scholar 

  12. Maghnouj, A., Abu-Bakr, A. A., Baumberg, S., Stalon, V., & Vander-Wauven, C. (2000). FEMS Microbiology Letters, 191, 227–234.

    Article  CAS  Google Scholar 

  13. Hermann, T. (2003). Journal of Biotechnology, 104, 155–172.

    Article  CAS  Google Scholar 

  14. Koffas, M., Roberge, C., Lee, K., & Stephanopoulos, G. (1999). Annual Review of Biomedical Engineering, 1, 535–557.

    Article  CAS  Google Scholar 

  15. Cunin, R., Glansdorff, N., Piérard, A., & Stalon, V. (1986). Microbiological Reviews, 50, 314–352.

    CAS  Google Scholar 

  16. Xu, H., Dou, W. F., Xu, H. Y., Zhang, X. M., Rao, Z. M., Shi, Z. P., et al. (2009). Biochemical Engineering Journal, 43, 41–51.

    Article  CAS  Google Scholar 

  17. Stark, B. C., Webster, D. A., & Dikshit, K. L. (1999). Recent Research Developments in Biotechnology and Bioengineering, 2, 155–174.

    CAS  Google Scholar 

  18. Wakabayashi, S., Matsubara, H., & Webster, D. A. (1986). Nature, 322, 481–483.

    Article  CAS  Google Scholar 

  19. Dikshit, K. L., & Webster, D. A. (1988). Gene, 70, 377–386.

    Article  CAS  Google Scholar 

  20. Khosla, C., & Bailey, J. E. (1988). Molecular & General Genetics, 214, 158–161.

    Article  CAS  Google Scholar 

  21. Urgun-Demirtas, M., Pagilla, K. R., Stark, B. C., & Webster, D. (2003). Biodegradation, 14, 357–365.

    Article  CAS  Google Scholar 

  22. Urgun-Demirtas, M., Pagilla, K. R., & Stark, B. C. (2004). Biotechnology and Bioengineering, 87, 110–118.

    Article  CAS  Google Scholar 

  23. Kallio, P. T., Kim, D. J., Tsai, P. S., & Bailey, J. E. (1994). European Journal of Biochemistry, 219, 201–208.

    Article  CAS  Google Scholar 

  24. Park, K. W., Kim, K. J., Howard, A. J., Stark, B. C., & Webster, D. A. (2002). The Journal of Biological Chemistry, 277, 33334–33337.

    Article  CAS  Google Scholar 

  25. Ramendeep, Hwang, K. W., Raje, M., Kim, K. J., Stark, B. C., Dikshit, K. L., et al. (2001). The Journal of Biological Chemistry, 276, 24781–24789.

    Article  Google Scholar 

  26. Eikmanns, B. J., Kleinertz, E., Liebl, W., & Sahm, H. (1991). Gene, 102, 93–98.

    Article  CAS  Google Scholar 

  27. Pateka, M., Nesveraa, J., Guyonvarchb, A., Reyes, O., & Leblon, G. (2003). Journal of Biotechnology, 104, 311–323.

    Article  Google Scholar 

  28. Ausubel, F. M., Brent, R., & Kingston, R. E. (1987). Current Protocols in Molecular Biology. New York: Wiley.

    Google Scholar 

  29. Tauch, A., Kirchner, O., Löffler, B., Götker, S., Pühler, A., & Kalinowski, J. (2002). Current Microbiology, 45, 362–367.

    Article  CAS  Google Scholar 

  30. Tsai, P. S., Nageli, M., & Bailey, J. E. (2002). Biotechnology and Bioengineering, 79, 558–567.

    Article  CAS  Google Scholar 

  31. Shaw, W. V. (1975). Methods Enzymol, 43, 737–755.

    Article  CAS  Google Scholar 

  32. Jermyn, M. A. (1975). Analytical Biochemistry, 68, 332–350.

    Article  CAS  Google Scholar 

  33. Dikshit, K. L., Dikshit, R. P., & Webster, D. A. (1990). Nucleic Acids Research, 18, 4149–55.

    Article  CAS  Google Scholar 

  34. De Boer, H. A., Comstock, L. J., & Vasser, M. (1983). Proceedings of the National Academy of Science, 80, 21–25.

    Article  Google Scholar 

  35. Chen, W., Hughes, D. E., & Bailey, J. E. (1994). Biotechnology Progress, 10, 308–313.

    Article  CAS  Google Scholar 

  36. Wu, J. M., Tsu, T. A., & Lee, C. K. (2003). Biotechnological Letters, 25, 1457–1462.

    Article  CAS  Google Scholar 

  37. Suthar, D. H., & Chattoo, B. B. (2006). Applied Microbiology and Biotechnology, 72, 94–102.

    Article  CAS  Google Scholar 

  38. Chen, R., & Bailey, J. E. (1994). Biotechnology Progress, 10, 360–364.

    Article  CAS  Google Scholar 

  39. Tsai, P. S., Hatzimanikatis, V., & Bailey, J. E. (1995). Biotechnology and Bioengineering, 49, 139–150.

    Article  Google Scholar 

  40. Webster, D. A. (1987). Structure and function of bacterial hemoglobin and related proteins. In G. C. Eichhorn & L. G. Marzilli (Eds.), Advances in inorganic chemistry (pp. 245–265). New York: Elsevier.

    Google Scholar 

  41. Dogan, I., Pagilla, K. R., Webster, D. A., & Stark, B. C. (2006). Journal of Industrial Microbiology & Biotechnology, 33, 693–700.

    Article  CAS  Google Scholar 

  42. Yang, M. M., Zhang, W. W., Zhang, X. F., & Cen, P. L. (2006). Biotechnological Letters, 78, 1713–1718.

    Google Scholar 

  43. Cremer, J., Eggeling, L., & Sahm, H. (1990). Molecular & General Genetics, 220, 478–480.

    Article  CAS  Google Scholar 

  44. Goyal, D., Wachi, M., Kijima, N., Kobayashi, M., Yukawa, H., & Nagai, K. (1996). Plasmid, 36, 62–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the High-tech Research and Development Programs of China (2006AA020301, 2007AA02Z207), the National Basic Research Program of China (2007CB707800), the National Natural Science Foundation of China (20676053, 30970056) and the Program for New Century Excellent Talents in University (NCET-07-0380), Fok Ying Tung Education Foundation (121020), the Fundamental Research Funds for the Central Universities (JUSRP31001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Rao or Zhenghong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Rao, Z., Xu, H. et al. Enhanced Production of l-Arginine by Expression of Vitreoscilla Hemoglobin Using a Novel Expression System in Corynebacterium crenatum . Appl Biochem Biotechnol 163, 707–719 (2011). https://doi.org/10.1007/s12010-010-9076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9076-z

Keywords

Navigation