Skip to main content
Log in

An Exopolysaccharide from Cultivated Cordyceps sinensis and its Effects on Cytokine Expressions of Immunocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The exopolysaccharide (EPS) is a polysaccharide from cultivated Cordyceps sinensis, which possesses immunomodulatory and antitumor effects, was purified by DEAE-32 cellulose and Sephadex G-200 gel. The preliminary characters of EPS were analyzed by IR and GC, and the molecular weight was estimated by gel filtration. The effect of EPS on proliferation ability of lymphocytes from ICR mice was assayed by MTT method. The mRNA and protein expression levels of several cytokines in spleen and thymus cells were detected by RT-PCR and ELISA. The results showed that EPS consists of mannose, glucose, and galactose in a ratio of 23:1:2.6. Its molecular weight is about 1.04 × 105. EPS elevated proliferation ability of spleen lymphocytes only at 100 μg/ml after 48 h treatment. Tumor necrosis factor alpha (TNF-α), interferon-α (IFN-γ), and interleukin-2 (IL-2) mRNA levels in splenocytes and thymocytes were increased after EPS treatment for 2, 4, 8, or 20 h. EPS also significantly elevated splenic TNF-α and IFN-γ protein expressions at 100 μg/ml and increased thymic TNF-α and IFN-γ protein levels at 50 and 100 μg/ml. These data indicated that EPS may stimulate cytokine expressions of immunocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moradali, M. F., Mostafavi, H., Ghods, S., & Hedjaroude, G. A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7, 701–724.

    Article  CAS  Google Scholar 

  2. Chang, Y. H., Yang, J. S., Yang, J. L., Wu, C. L., Chang, S. J., Lu, K. W., et al. (2009). Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo. Bioscience, Biotechnology, and Biochemistry, 73, 2589–2594.

    Article  CAS  Google Scholar 

  3. Hetland, G., Johnson, E., Lyberg, T., Bernardshaw, S., Tryggestad, A. M., & Grinde, B. (2008). Effects of the medicinal mushroom Agaricus blazei Murill on immunity, infection and cancer. Scandinavian Journal of Immunology, 68, 363–370.

    Article  CAS  Google Scholar 

  4. Tzianabos, A. O. (2000). Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clinical Microbiology Reviews, 13, 523–533.

    Article  CAS  Google Scholar 

  5. Wasser, S. P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60, 258–274.

    Article  CAS  Google Scholar 

  6. Liu, J. J., Huang, T. S., Hsu, M. L., Chen, C. C., & Lin, W. S. (2004). Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicology and Applied Pharmacology, 201, 186–193.

    Article  CAS  Google Scholar 

  7. Zhao, H., Luo, Y., Lu, C., Lin, N., Xiao, C., Guan, S., et al. (2010). Enteric mucosal immune response might trigger the immunomodulation activity of Ganoderma lucidum polysaccharide in mice. Planta Medica, 76, 223–227.

    Article  CAS  Google Scholar 

  8. Zhang, W. Y., Yang, J. Y., Chen, J. P., Hou, Y. Y., & Han, X. D. (2005). Immunomodulatory and antitumor effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinense fungus on tumor-bearing mice. Biotechnology and Applied Biochemistry, 42, 9–11.

    Article  CAS  Google Scholar 

  9. Zhang, W. Y., Li, J., Qiu, S. Q., Chen, J. P., & Zhen, Y. (2008). Effects of the exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis on immunocytes of H22 tumor bearing mice. Fitoterapia, 79, 168–173.

    Article  Google Scholar 

  10. Huang, D., Zhang, W., Huang, D., & Wu, J. (2010). Antitumor activity of the aqueous extract from Sedum sarmentosum Bunge in vitro. Cancer Biotherapy & Radiopharmaceuticals, 25, 81–88.

    Article  CAS  Google Scholar 

  11. Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F., & Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. The Biochemical Journal, 334, 297–231.

    CAS  Google Scholar 

  12. Hacker, E., Muller, K., Whiteman, D. C., Pavey, S., Hayward, N., & Walke, G. (2008). Reduced expression of IL-18 is a marker of ultraviolet radiation-induced melanomas. International Journal of Cancer, 123, 227–231.

    Article  CAS  Google Scholar 

  13. Heikkilä, K., Ebrahim, S., & Lawlor, D. A. (2008). Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. European Journal of Cancer, 44, 937–945.

    Article  Google Scholar 

  14. Ho, M. Y., Sun, G. H., Leu, S. J., Ka, S. M., Tang, S. J., & Sun, K. H. (2008). Combination of Fasl and GM-CSF confers synergistic antitumor immunity in an in vivo model of the murine Lewis lung carcinoma. International Journal of Cancer, 123, 123–133.

    Article  CAS  Google Scholar 

  15. Vairaktaris, E., Yapijakis, C., Serefoglou, Z., Derka, S., Vassilio, S., Nkenke, E., et al. (2008). The interleukin-10 (-1082A/G) polymorphism is strongly associated with increased risk for oral squamous cell carcinoma. Anticancer Research, 28, 309–314.

    CAS  Google Scholar 

  16. Watanabe, N., Niitsu, Y., Umeno, H., Kuriyama, H., Neda, H., Yamauchi, N., et al. (1988). Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Research, 48, 2179–2183.

    CAS  Google Scholar 

  17. Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine & Growth Factor Reviews, 13, 95–109.

    Article  CAS  Google Scholar 

  18. Kim, P. K., Armstrong, M., Liu, Y., Yan, P., Bucher, B., & Zuckerbraun, B. S. (2004). IRF-1 expression induces apoptosis and inhibits tumour growth in mouse mammary cancer cells in vitro and in vivo. Oncogene, 23, 1125–1135.

    Article  CAS  Google Scholar 

  19. Bouker, K. B., Skaar, T. C., Riggins, R. B., Harburger, D. S., Fernandez, D. R., & Zwart, A. (2005). Interferon regulatory factor-1 (IRF-1) exhibits tumour suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis, 26, 1527–1535.

    Article  CAS  Google Scholar 

  20. Connett, J. M., Badri, L., Giordano, T. J., Connett, W. C., & Doherty, G. M. (2005). Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays. Journal of Interferon and Cytokine Research, 25, 587–594.

    Article  CAS  Google Scholar 

  21. Sidky, Y. A., & Borden, E. C. (1987). Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Research, 47, 5155–5161.

    CAS  Google Scholar 

  22. Rosenberg, S. A. (2001). Progress in human tumour immunology and immunotherapy. Nature, 411, 380–384.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Nature Science Foundation of China (No. 30873188 to W.Y. Zhang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, L., Chen, J., Li, J. et al. An Exopolysaccharide from Cultivated Cordyceps sinensis and its Effects on Cytokine Expressions of Immunocytes. Appl Biochem Biotechnol 163, 669–678 (2011). https://doi.org/10.1007/s12010-010-9072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9072-3

Keywords

Navigation