Skip to main content
Log in

Replacing Synthetic with Microbial Surfactants as Collectors in the Treatment of Aqueous Effluent Produced by Acid Mine Drainage, Using the Dissolved Air Flotation Technique

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dissolved air flotation (DAF) is a well-established separation process employing micro bubbles as a carrier phase. The application of this technique in the treatment of acid mine drainage, using three yeast biosurfactants as alternative collectors, is hereby analyzed. Batch studies were carried out in a 50-cm high acrylic column with an external diameter of 2.5 cm. High percentages (above 94%) of heavy metals Fe(III) and Mn(II) were removed by the biosurfactants isolated from Candida lipolytica and Candida sphaerica and the values were found to be similar to those obtained with the use of the synthetic sodium oleate surfactant. The DAF operation with both surfactant and biosurfactants, achieved acceptable turbidity values, in accordance with Brazilian standard limits. The best ones were obtained by the biosurfactant from C. lipolytica, which reached 4.8 NTU. The results obtained with a laboratory synthetic effluent were also satisfactory. The biosurfactants removed almost the same percentages of iron, while the removal percentages of manganese were slightly higher compared with those obtained in the acid mine drainage effluent. They showed that the use of low-cost biosurfactants as collectors in the DAF process is a promising technology for the mining industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Besser, J. M., Brumbaugh, W. G., Allert, A. L., Poulton, B. C., Schmitt, C. J., & Ingersoll, C. G. (2009). Ecotoxicology and Environmental Safety, 72, 516–526.

    Article  CAS  Google Scholar 

  2. Singer, P. E., & Stumm, W. (1970). Science, 167, 1121–1123.

    Article  CAS  Google Scholar 

  3. Kontopoulos, A. (1998). Acid Mine Drainage Control. In S. H. Castro, F. Vergara, & M. A. Sánchez (Eds.), Effluent Treatment in the Mining Industry (pp. 57–118). Chile: University of Concepción.

    Google Scholar 

  4. Eger, P. (1994). Water Sci Technol, 29, 249–256.

    CAS  Google Scholar 

  5. Rubio, J., Souza, M. L., & Smith, R. W. (2002). Minerals Engineering, 15, 139–155.

    Article  CAS  Google Scholar 

  6. Valente, T. M., & Gomes, C. L. (2009). Sci Total Environ, 407, 1135–1152.

    Article  CAS  Google Scholar 

  7. Menezes, C. T. B., Isidoro, G., Rosa, J. J., Rubio, J., Leal-Filho, L. S., Galatto, S. L., & Santo, E. L. (2004). In: Treatment of acid mine drainage from Carbonífera Metropolitana. Proceedings of the 20th National Meeting on Minerals Treatment and Extractive Mettalurgy, Florianópolis. pp. 599–607 (in Portuguese).

  8. Tessele, F., Rubio, J., & Misra, M. (1998). Minerals Engineering, 11, 535–543.

    Article  CAS  Google Scholar 

  9. Emamjomeh, M. M., & Sivakumar, M. (2009). Journal of Environmental Management, 90, 1204–1212.

    Article  CAS  Google Scholar 

  10. Peng, J.-F., Song, Y.-H., Yuan, P., Cui, X.-Y., & Qiu, G.-L. (2009). Journal of Hazardous Materials, 161, 633–640.

    Article  CAS  Google Scholar 

  11. Zouboulis, A. I., Matis, K. A., Lazaridis, N. K., & Golyshin, P. N. (2003). Minerals Engineering, 16, 1231–1236.

    Article  CAS  Google Scholar 

  12. Zouboulis, A. I., & Matis, K. A. (1995). Water Sci Technol, 31, 315–319.

    Article  CAS  Google Scholar 

  13. Urum, K., Pekdemir, T., Ross, D., & Grigson, S. (2005). Chemosphere, 60, 334–343.

    Article  CAS  Google Scholar 

  14. Beneventi, D., Allix, J., Zeno, E., Nortier, P., & Carré, B. (2009). Separation and Purification Technology, 64, 357–367.

    Article  CAS  Google Scholar 

  15. Féris, L. A., Gallina, S. C., Rodrigues, R. T., & Rubio, R. (2001). Journal of Water Science and Technology, 43, 145–152.

    Google Scholar 

  16. Muthusamy, K., Gopalakrishnan, S., Ravi, T. K., & Sivachidambaram, P. (2008). Current Science, 94, 736–747.

    CAS  Google Scholar 

  17. Cortis, A., & Ghezzehei, T. A. (2007). Journal of Colloid and Interface Science, 313, 1–4.

    Article  CAS  Google Scholar 

  18. Singh, A., Van-Hamme, J. D., & Ward, O. P. (2007). Biotechnology Advances, 25, 99–121.

    Article  CAS  Google Scholar 

  19. Wang, S., & Mulligan, C. N. (2004). Water, Air, and Soil Pollution, 157, 315–330.

    Article  CAS  Google Scholar 

  20. Mulligan, C. N. (2005). Environmental Pollution, 133, 183–198.

    Article  CAS  Google Scholar 

  21. Coimbra, C. D., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2009). Current Microbiology, 58, 245–249.

    Article  CAS  Google Scholar 

  22. Asçi, Y., Nurbas, M., & Açikel, Y. S. A. (2008). Journal of Hazardous Materials, 154, 663–673.

    Article  Google Scholar 

  23. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Engineering Geology, 60, 371–380.

    Article  Google Scholar 

  24. Sen, R. (2008). Progress in Energy Combustion Science, 34, 714–724.

    Article  CAS  Google Scholar 

  25. Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Applied Microbiology and Biotechnology, 51, 553–563.

    Article  CAS  Google Scholar 

  26. Lu, J. R., Zhao, X. B., & Yaseen, M. (2007). Current Opinion in Colloid and Interface Science, 12, 60–67.

    Article  CAS  Google Scholar 

  27. Seydlová, G., & Svobodová, J. (2008). Central European Journal of Medicine, 2, 123–133.

    Article  Google Scholar 

  28. Sandrin, T. R., & Maier, R. M. (2003). Environ Health Perspect, 111, 1093–1101.

    Article  CAS  Google Scholar 

  29. Sobrinho, H. B. S., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F. C., et al. (2008). Process Biochemistry, 43, 912–917.

    Article  CAS  Google Scholar 

  30. Rufino, R. D., Sarubbo, L. A., Benicio, B. N., & Campos-Takaki, G. M. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 907–914.

    Article  CAS  Google Scholar 

  31. Luna, J. M., Rufino, R. D., Sarubbo, L. A., & Campos-Takaki, G. M. (2008) In: Proceedings of the 11th National Meeting on Environmental Microbiology, Stability of the biosurfactant from Candida sphaerica, Fortaleza. pp. 577–579 (in Portuguese).

  32. APHA. (1992). Standard methods for the examination of water and wastewater - American Public Health Association, American Water Works Association & Water Environment Federation. Washington: Victor Graphics, Inc.

    Google Scholar 

  33. CONAMA (2005) Resolution No 357, Environment National Council, Brazil (in portuguese).

  34. Matis, K. A. (1995). Flotation Science and Engineering. New York: Marcel Dekker.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We are grateful to Instituto de pesquisas Ambientais e Tecnológicas (IPAT), from Universidade do Extremo Sul Catarinense, Brazil and to Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB) laboratories, from Universidade Católica de Pernambuco, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie A. Sarubbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, C.T.B., Barros, E.C., Rufino, R.D. et al. Replacing Synthetic with Microbial Surfactants as Collectors in the Treatment of Aqueous Effluent Produced by Acid Mine Drainage, Using the Dissolved Air Flotation Technique. Appl Biochem Biotechnol 163, 540–546 (2011). https://doi.org/10.1007/s12010-010-9060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9060-7

Keywords

Navigation