Skip to main content
Log in

Adaptive Evolution of Escherichia coli Inactivated in the Phosphotransferase System Operon Improves Co-utilization of Xylose and Glucose Under Anaerobic Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Modification of the phosphoenolpyruvate/sugar phosphotransferase system (PTS) has shown improvement in sugar coassimilation in Escherichia coli production strains. However, in preliminary experiments under anaerobic conditions, E. coli strains with an inactive PTS and carrying pLOI1594, which encodes pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis, were unable to grow. These PTS strains were previously evolved under aerobic conditions to grow rapidly in glucose (PTS- Glucose+ phenotype). Thus, in this work, applying a continuous culture strategy under anaerobic conditions, we generate a new set of evolved PTS Glucose+ mutants, VH30N1 to VH30N6. Contrary to aerobically evolved mutants, strains VH30N2 and VH30N4 carrying pLOI1594 grew in anaerobiosis; also, their growth capacity was restored in a 100%, showing specific growth rates (μ ~ 0.12 h−1) similar to the PTS+ parental strain (μ = 0.11 h−1). In cultures of VH30N2/pLOI1594 and VH30N4/pLOI1594 using a glucose–xylose mixture, xylose was totally consumed and consumption of sugars occurred in a simultaneous manner indicating that catabolic repression is alleviated in these strains. Also, the efficient sugar coassimilation by the evolved strains caused an increment in the ethanol yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shanmugam, K. T., & Ingram, L. O. (2008). Journal of Molecular Microbiology and Biotechnology, 15, 8–15.

    Article  CAS  Google Scholar 

  2. Wang, Z., Chen, M., Xu, Y., Li, S., Lu, W., Ping, S., et al. (2008). Biotechnology Letters, 30, 657–663.

    Article  CAS  Google Scholar 

  3. Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  4. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Applied Microbiology and Biotechnology, 63, 258–266.

    Article  CAS  Google Scholar 

  5. Görke, B., & Stülke, J. (2008). Nature Reviews. Microbiology, 6, 613–624.

    Article  Google Scholar 

  6. Deutscher, J. (2008). Current Opinion in Microbiology, 11, 87–93.

    Article  CAS  Google Scholar 

  7. Saier, M. H. (1977). Bacteriological Reviews, 41, 856–871.

    CAS  Google Scholar 

  8. Kotrba, P., Inui, M., & Yukawa, H. (2001). Journal of Bioscience and Bioengineering, 92, 502–517.

    Article  CAS  Google Scholar 

  9. Flores, N., Xiao, J., Berry, A., Bolivar, F., & Valle, F. (1996). Nature, 4, 620–623.

    Google Scholar 

  10. Flores, S., Gosset, G., Flores, N., de Graff, A. A., & Bolivar, F. (2002). Metabolic Engineering, 4, 124–137.

    Article  CAS  Google Scholar 

  11. Flores, N., Flores, S., Escalante, A., de Anda, R., Leal, L., Malpica, R., et al. (2005). Metabolic Engineering, 7, 70–87.

    Article  CAS  Google Scholar 

  12. Flores, S., Flores, N., de Anda, R., González, A., Escalante, A., Sigala, J. C., et al. (2005). Journal of Molecular Biology and Biotechnology, 10, 51–63.

    CAS  Google Scholar 

  13. Hernández-Montalvo, V., Valle, F., Bolívar, F., & Gosset, G. (2001). Applied Microbiology and Biotechnology, 57, 186–191.

    Article  Google Scholar 

  14. Hernández-Montalvo, V., Martínez, A., Hernández-Chávez, G., Bolívar, F., Valle, F., & Gosset, G. (2003). Biotechnology and Bioengineering, 83, 687–694.

    Article  Google Scholar 

  15. Maniatis, T., Fritsch, E. F., & Sambrook, J. (1989). In Nolan C (ed), Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory.

  16. Jensen, K. F. (1993). Journal of Bacteriology, 175, 3401–3407.

    CAS  Google Scholar 

  17. Martinez, A., York, S. W., Yomano, L. P., Pineda, V. L., Davis, F. C., Shelton, J. C., et al. (1999). Biotechnology Progress, 15, 891–897.

    Article  CAS  Google Scholar 

  18. Beall, D. S., Ohta, K., & Ingram, L. O. (1991). Biotechnology and Bioengineering, 38, 296–303.

    Article  CAS  Google Scholar 

  19. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Biotechnology Progress, 17, 287–293.

    Article  CAS  Google Scholar 

  20. Madhavan, A., Tamalampudi, S., Srivastava, A., Fukuda, H., Bisaria, V. S., & Kondo, A. (2009). Applied Microbiology and Biotechnology, 82, 1037–1047.

    Article  CAS  Google Scholar 

  21. Hasona, A., Kim, Y., Healy, F. G., Ingram, L. O., & Shanmugam, K. T. (2004). Journal of Bacteriology, 186, 7593–7600.

    Article  CAS  Google Scholar 

  22. Okuda, N., Ninomiya, K., Takao, M., Katakura, Y., & Shioya, S. (2007). Journal of Bioscience and Bioengineering, 103, 350–357.

    Article  CAS  Google Scholar 

  23. Dien, B. S., Nichols, N. N., & Bothast, R. J. (2002). Journal of Industrial Microbiology and Biotechnology, 29, 221–227.

    Article  CAS  Google Scholar 

  24. Nichols, N. N., Dien, B. S., & Bothast, R. J. (2001). Applied Microbiology and Biotechnology, 56, 120–125.

    Article  CAS  Google Scholar 

  25. Cirino, P. C., Chin, J. W., & Ingram, L. O. (2006). Biotechnology and Bioengineering, 95, 1167–1176.

    Article  CAS  Google Scholar 

  26. Khankal, R., Chin, J. W., & Cirino, P. C. (2008). Journal of Biotechnology, 134, 246–252.

    Article  CAS  Google Scholar 

  27. Eiteman, M. A., Lee, S. A., & Altman, E. (2008). Journal of Biological Engineering, 2, 3.

    Article  Google Scholar 

  28. Andersson, C., Hodge, D., Berglund, K. A., & Rova, U. (2007). Biotechnology Progress, 23, 381–388.

    Article  CAS  Google Scholar 

  29. Li, R., Chen, Q., Wang, P. G., & Qi, Q. (2007). Applied Microbiology and Biotechnology, 75, 1103–1109.

    Article  CAS  Google Scholar 

  30. Mascarenhas, D. (1987). Patent WO/1987/001130, US.

  31. Escalante, A., Calderón, R., Valdivia, A., de Anda, R., Hernández, G., Ramírez, O.T., et al. (2010). Microbial Cell Factories, 9:21, 1–12.

    Google Scholar 

Download references

Acknowledgements

We thank Mercedes Enzaldo, Georgina Hernández, and Roberto Rodríguez for technical assistance. This work was supported by the following grants: Estado de Morelos MOR-2007-C01-80360 and PAPIIT-DGAPA-UNAM IN226908-3 and IN220908. V. Hernández-Montalvo held a scholarship from CONACyT-México. V.E. Balderas-Hernández is thankful for the postdoctoral fellowship support by DGAPA-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Martínez.

Additional information

Victor E. Balderas-Hernández and Verónica Hernández-Montalvo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balderas-Hernández, V.E., Hernández-Montalvo, V., Bolívar, F. et al. Adaptive Evolution of Escherichia coli Inactivated in the Phosphotransferase System Operon Improves Co-utilization of Xylose and Glucose Under Anaerobic Conditions. Appl Biochem Biotechnol 163, 485–496 (2011). https://doi.org/10.1007/s12010-010-9056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9056-3

Keywords

Navigation