Skip to main content
Log in

Poly-β-hydroxybutyrate and Exopolysaccharide Biosynthesis by Bacterial Isolates from Pigeonpea [Cajanus cajan (L.) Millsp] Root Nodules

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The bacterial strains that are able to produce biopolymers that are applied in industrial sectors present a source of renewable resources. Some microorganisms are already applied at several industrial sectors, but the prospecting of new microbes must bring microorganisms that are feasible to produce interesting biopolymers more efficiently and in cheaper conditions. Among the biopolymers applied industrially, polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) stand out because of its applications, mainly in biodegradable plastic production and in food industry, respectively. In this context, the capacity of bacteria isolated from pigeonpea root nodules to produce EPS and PHB was evaluated, as well as the cultural characterization of these isolates. Among the 38 isolates evaluated, the majority presented fast growth and ability to acidify the culture media. Regarding the biopolymer production, five isolates produced more than 10 mg PHB per liter of culture medium. Six EPS producing bacteria achieved more than 200 mg EPS per liter of culture medium. Evaluating different carbon sources, the PHB productivity of the isolate 24.6b reached 69% of cell dry weight when cultured with starch as sole carbon source, and the isolate 8.1c synthesized 53% PHB in dry cell biomass and more than 1.3 g L−1 of EPS when grown using xylose as sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sutherland, I. W. (1998). Trends in Biotechnology, 16, 41–46.

    Article  CAS  Google Scholar 

  2. Kumar, A. S., Mody, K., & Jha, B. (2007). Journal of Basic Microbiology, 47, 103–117.

    Article  CAS  Google Scholar 

  3. Skorupska, A., Janczarek, M., Marczak, M., Mazur, A., & Krol, J. (2006). Microbial Cell Factories 5, n.p.

  4. Wang, P., Zhong, Z. T., Zhou, J., Cai, T., & Zhu, J. (2008). Archives of Microbiology, 189, 525–530.

    Article  CAS  Google Scholar 

  5. Mendonça, R. H., Thire, R., Costa, M. F., & Filho, F. C. S. (2009). Polimeros, 19, 143–148.

    Google Scholar 

  6. Madison, L. L., & Huisman, G. W. (1999). Microbiology and Molecular Biology, 63, 21–53.

    CAS  Google Scholar 

  7. Silva, L. F., Goméz, J. G. C., Rocha, R. C. S., Taciro, M. K., & Pradella, J. G. D. (2007). Quimica Nova, 30, 1732–1743.

    Google Scholar 

  8. Trainer, M. A., & Charles, T. C. (2006). Applied Microbiology and Biotechnology, 71, 377–386.

    Article  CAS  Google Scholar 

  9. Fernandes Júnior, P. I., Rohr, T. G., Oliveira, P. J., Xavier, G. R., & Rumjanek, N. G. (2009). Pesquisa Agropecuária Brasileira, 44, 1184–1190.

    Article  Google Scholar 

  10. Rottava, I., Batesini, G., Silva, M. F., Lerin, L., Oliveira, D., Padilha, F. F., et al. (2009). Carbohydrate Polymers, 77, 65–71.

    Article  CAS  Google Scholar 

  11. Castellane, T. C. L., & Lemos, E. G. M. (2007). Pesquisa Agropecuária Brasileira, 42, 1503–1506.

    Article  Google Scholar 

  12. Vincent, J. M. (1970). A manual for practical study of root nodule bacteria, IBP Handbook. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  13. Xavier, G. R., Martins, L. M. V., Neves, M. C. P., & Rumjanek, N. G. (1998). Biology and Fertility Soils, 27, 386–392.

    Article  CAS  Google Scholar 

  14. Teixeira, F. C. P., Borges, W. L., Xavier, G. R., & Rumjanek, N. G. (2010). Brazilian Journal of Microbiology, 41, 201–208.

    Article  Google Scholar 

  15. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Palaeontologia Electronica 4, n.p.

  16. Kumari, B. S., Ram, M. R., & Mallayah, K. V. (2008). African Journal of Microbiology Research, 3, 10–14.

    Google Scholar 

  17. Pimenta, F. D., Lopes, L. M. A., & França, F. P. (2008). Applied Biochemistry and Biotechnology, 150, 33–49.

    Article  Google Scholar 

  18. Karr, D. B., Waters, J. K., & Emerich, D. W. (1983). Applied and Environmental Microbiology, 46, 1339–1344.

    CAS  Google Scholar 

  19. Conover, W. J. (1971). Practical nonpametric statistics. New York: John Wiley and sons Inc.

    Google Scholar 

  20. Leite, J., Seido, S. L., Passos, S. R., Xavier, G. R., Rumjanek, N. G., & Martins, L. M. V. (2009). Revista Brasileira de Ciência do Solo, 33, 1215–1226.

    Google Scholar 

  21. Bushby, H. V. A., & Marshall, K. C. (1977). Soil Biology and Biochemistry, 9, 143–147.

    Article  CAS  Google Scholar 

  22. Batista, J. S. S., Hungria, M., Barcellos, F. G., Ferreira, M. C., & Mendes, I. C. (2007). Microbial Ecology, 53, 270–284.

    Article  Google Scholar 

  23. Lima, A. A. (2008). M.S.c. Dissertation, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.

  24. Fernandes Júnior, P. I. (2009). Ph.D. Thesis, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.

  25. Quagliano, J. C., & Miyazaki, S. S. (1999). Applied Biochemistry and Biotechnology, 82, 199–208.

    Article  CAS  Google Scholar 

  26. Mercan, N., Aslım, B., Yüksekdağ, Z. N., & Beyatlı, Y. (2002). Turkish Journal of Biology, 26, 215–219.

    CAS  Google Scholar 

  27. Rinaudi, L. V., & Giordano, W. (2010). FEMS Microbiology Letters, 304, 1–11.

    Article  CAS  Google Scholar 

  28. Kim, B. S. (2000). Enzyme Microb Technol, 27, 774–777.

    Article  CAS  Google Scholar 

  29. Ramadas, N. V., Singh, S. K., Soccol, C. R., & Pandey, A. (2009). Brazilian Archives of Biology and Technology, 52, 17–23.

    Article  CAS  Google Scholar 

  30. Cavalheiro, J. A. M., Grandfils, C., & Fonseca, M. M. R. (2009). Process Biochemistry, 44, 509–515.

    Article  CAS  Google Scholar 

  31. Ben Rebah, F., Prevost, D., Tyagi, R. D., & Belbahri, L. (2009). Applied Biochemistry and Biotechnology, 158, 155–163.

    Article  CAS  Google Scholar 

  32. Reddy, S. V., Thirumala, M., Reddy, T. V. K., & Mahmood, S. K. (2008). World Journal of Microbiology and Biotechnology, 24, 2949–2955.

    Article  CAS  Google Scholar 

  33. Halami, P. M. (2008). World Journal of Microbiology and Biotechnology, 24, 805–812.

    Article  CAS  Google Scholar 

  34. Haas, R., Jin, B., & Zepf, T. F. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 253.

    Article  CAS  Google Scholar 

  35. Martinez-Toledo, M. V., Gonzalez-Lopez, J., Rodelas, B., Pozo, C., & Salmeron, V. J. (1995). Journal of Applied Bacteriology, 78, 413.

    CAS  Google Scholar 

  36. Lopes, M. S. G., Rocha, R. C. S., Zanotto, S. P., Goméz, J. G. C., & Silva, L. F. (2009). World Journal of Microbiology and Biotechnology, 25, 1751–1756.

    Article  CAS  Google Scholar 

  37. Arora, N. K., Singhal, V., & Maheshwari, D. K. (2006). World Journal of Microbiology and Biotechnology, 22, 603–606.

    Article  CAS  Google Scholar 

  38. Ratcliff, W. C., Kadam, S. V., & Denison, R. F. (2008). FEMS Microbiology Ecology, 65, 391–399.

    Article  CAS  Google Scholar 

  39. Helm, J., Wendlandt, K. D., Jechorek, M., & Stottmeister, U. (2008). Journal of Applied Microbiology, 105, 1054–1061.

    Article  CAS  Google Scholar 

  40. Kuçuk, C., & Kivanc, M. (2009). Annales de Microbiologie, 59, 141–144.

    Article  Google Scholar 

  41. Arun, A., Murrugappan, R., Ravindran, A. D. D., Veeramanikandan, V., & Balaji, S. (2006). African Journal of Biotechnology, 5, 1524–1527.

    CAS  Google Scholar 

  42. Wang, J., & Yu, H. Q. (2007). Applied Microbiology and Biotechnology, 75, 871–878.

    Article  CAS  Google Scholar 

  43. Tavernier, P., Portais, J. C., Saucedo, J. E. N., Courtois, J., Courtois, B., & Barbotin, J. N. (1997). Applied and Environmental Microbiology, 63, 21–26.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Embrapa Agrobiologia, and Curso de Pós-graduação em Agronomia-Ciência do Solo (CPGA-CS) of Universidade Federal Rural do Rio de Janeiro, which provided financial and structural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Ivan Fernandes Júnior.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes Júnior, P.I., de Oliveira, P.J., Rumjanek, N.G. et al. Poly-β-hydroxybutyrate and Exopolysaccharide Biosynthesis by Bacterial Isolates from Pigeonpea [Cajanus cajan (L.) Millsp] Root Nodules. Appl Biochem Biotechnol 163, 473–484 (2011). https://doi.org/10.1007/s12010-010-9055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9055-4

Index terms

Navigation