Skip to main content
Log in

The Optimization of Dilute Acid Hydrolysis of Cotton Stalk in Xylose Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cotton stalk, a lignocellulosic waste material, is composed of xylose that can be used as a raw material for production of xylitol, a high-value product. There is a growing interest in the use of lignocellulosic wastes for conversion into various chemicals because of their low cost and the fact that they are renewable and abundant. The objective of the study was to determine the effects of H2SO4 concentration, temperature, and reaction time on the production of sugars (xylose, glucose, and arabinose) and on the reaction by-products (furfural and acetic acid). Response surface methodology was used to optimize the hydrolysis process in order to obtain high xylose yield and selectivity. The optimum reaction temperature, reaction time, and acid concentration were 140 °C, 15 min, and 6%, respectively. Under these conditions, xylose yield and selectivity were found to be 47.88% and 2.26 g g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bascetincelik, A., Ozturk, H.H., Karaca, C., Kacira, M., Ekinci, K., Kaya, D., Banan, A., Gunes, K., Komitti, N., Barnes, I. and Nieminen, M. (2006). Guide on exploitation of agricultural residues in Turkey life 03 TCY/TR/000061.

  2. Jeoh, T. (1988). Master Thesis. Blacksburg: Virginia Polytechnic Institute and State University.

    Google Scholar 

  3. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyerre, M. D., & Osborne, J. (2007). Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  4. Akpinar, O., Ak, O., Kavas, A., Bakir, U., & Yilmaz, L. (2007). Journal of Agricultural and Food Chemistry, 55, 5544–5551.

    Article  CAS  Google Scholar 

  5. Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  6. Parajo, J. C., Dominguez, H., & Dominguez, J. M. (1995). Bioprocess Engineering, 13, 125–131.

    Article  CAS  Google Scholar 

  7. Olinger, P. M., & Pepper, T. (2001). In L. O. Nabors (Ed.), Alternative Sweetener: Xylitol (pp. 335–365). New York: Marcel Decker.

    Google Scholar 

  8. Rivas, B., Dominguez, J. M., Domingues, H., & Parajo, J. C. (2002). Enzyme and Microbial Technology, 31, 431–438.

    Article  CAS  Google Scholar 

  9. Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L., & Kamaruddin, A. H. (2007). Bioresource Technology, 98, 554–559.

    Article  CAS  Google Scholar 

  10. Herrera, A., Tellez-Luist, S. J., Ramirez, J. A., & Vazquez, M. (2003). Journal of Cereal Science, 37, 267–274.

    Article  CAS  Google Scholar 

  11. Canettieri, E. V., Moraes Rocho, G. J., Carvalho, K. A., Jr., & Almeida e Silva, J. B. (2007). Bioresource Technology, 98, 422–428.

    Article  CAS  Google Scholar 

  12. Liavoga, A. B., Bian, Y., & Seib, P. A. (2007). Journal of Agricultural and Food Chemistry, 55, 7758–7766.

    Article  CAS  Google Scholar 

  13. Roberto, I. C., Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Sato, S., & Silva, S. S. (1995). Bioresource Technology, 51, 255–257.

    Article  CAS  Google Scholar 

  14. Roberto, I. C., Mussatto, S. I., & Rodrigues, R. C. L. B. (2003). Industrial Crops and Products, 17, 171–176.

    Article  CAS  Google Scholar 

  15. ASTM. (1993). Annual Book of ASTM Standards. Philadelphia: American Society for Testing and Materials. 04.09.

    Google Scholar 

  16. Melton, L. D., & Smith, B. G. (2002). In R. E. Wrolstad, T. E. Acree, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker, D. Smith, & P. Sporns (Eds.), Current Protocols in Food Analytical Chemistry: Determination of the Uronic Acid Content of Plant Cell Walls Using a Colorimetric Assay (pp. E3.3.1–E3.3.4). New York: Wiley.

    Google Scholar 

  17. Browning, B. L. (1967). in Methods of Wood Chemistry: Determination of Sugars (pp. 589–590). New York: Inter-Science.

    Google Scholar 

  18. William, S. (1997). AOAC official methods of analysis: furfural in distilled liquors. Arlington: AOAC.

    Google Scholar 

  19. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Bioresource Technology, 98, 2034–2042.

    Article  CAS  Google Scholar 

  20. Walther, T., Hensirisak, P., & Agblevor, F. A. (2001). Bioresource Technology, 76, 213–220.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by The Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Akpinar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akpinar, O., Levent, O., Bostanci, Ş. et al. The Optimization of Dilute Acid Hydrolysis of Cotton Stalk in Xylose Production. Appl Biochem Biotechnol 163, 313–325 (2011). https://doi.org/10.1007/s12010-010-9040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9040-y

Keywords

Navigation