Skip to main content
Log in

Structural and Thermal Investigations of Biomimetically Grown Casein–Soy Hybrid Protein Fibers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A hybrid protein fiber from different protein sources such as casein and soybean using wet-spinning technique was prepared. The casein/soybean hybrid fibers were synthesized at different weight ratios such as 100/0 (casein), 75/25, 50/50, 25/75, and 0/100 (soy) and characterized. Electron microscopic analysis confirmed the growth of pure and hybrid fibers and shows an increased surface roughness as the soy concentration increases in the hybrid fibers. Infrared spectra did not exhibit any significant changes in the functional groups between pure and hybrid fibers. X-ray diffraction pattern indicates slight increase in the diffraction peak values of hybrid fibers compared with the neat fibers. Thermal analyses show a moderate increase in the thermal stability of hybrid fibers when compared with the pure fibers. These results implicitly indicate that the casein and soy proteins are homogeneous in the hybrid fiber form. It has been demonstrated that the hybrid fiber with ≥50 wt.% casein content exhibits better morphology and increased thermal stability, which has scope for application in technical and medical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guhrs, K. H., Weisshart, K., & Grosse, F. (2000). Reviews in Molecular Biotechnology, 74, 121–134.

    Article  CAS  Google Scholar 

  2. Viney, C., & Bell, F. I. (2004). Current Opinion in Solid State and Materials Science, 8, 165–171.

    Article  CAS  Google Scholar 

  3. Scheibel, T. (2005). Current Opinion in Biotechnology, 16, 427–433.

    Article  CAS  Google Scholar 

  4. Silver, F. H., Freeman, J. W., & Seehra, G. P. (2003). Journal of Biomechanics, 36, 1529–1553.

    Article  Google Scholar 

  5. Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Journal of Cell Science, 115, 2817–2828.

    CAS  Google Scholar 

  6. Smith, A. M., Acquah, S. F., Bone, N., Kroto, H. W., Ryadnov, M. G., Stevens, M. S., et al. (2004). Angewandte Chemie International Edition, 44, 325–328.

    Article  Google Scholar 

  7. Ryadnov, M. G., & Woolfson, D. N. (2003). Angewandte Chemie International Edition, 42, 3021–3023.

    Article  CAS  Google Scholar 

  8. Shao, Z., & Vollrath, F. (2002). Nature, 418, 741.

    Article  CAS  Google Scholar 

  9. Arcidiacono, S., Mello, C. M., Butler, M., Welsh, E., Soares, J. W., Allen, A., et al. (2002). Macromolecules, 35, 1262–1266.

    Article  CAS  Google Scholar 

  10. Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Biomacromolecules, 3, 232–238.

    Article  CAS  Google Scholar 

  11. Wnek, G. E., Carr, M. E., Simpson, D. G., & Bowlin, G. L. (2003). Nano Letters, 3, 213–216.

    Article  CAS  Google Scholar 

  12. Peterson, R.F. (1950). US Patent 2512674.

  13. Boyer, R.A., Atkinson, W.T., Crupi, J. (1945). US Patent 2377853.

  14. Zhang, X., Min, B. G., & Kumar, S. (2003). Journal of Applied Polymer Science, 90, 716–721.

    Article  CAS  Google Scholar 

  15. Xie, J., & Hsieh, Y. L. (2003). Journal of Materials Science, 38, 2125–2133.

    Article  CAS  Google Scholar 

  16. Jia, Z., & Yang, Y. (2007). Polymer Bulletin, 59, 13–23.

    Article  CAS  Google Scholar 

  17. Zhang, Y., Ghasemzadeh, S., Kotliar, A. M., Kumar, S., Presnell, S., & Williams, L. D. (1999). Journal of Applied Polymer Science, 71, 11–19.

    Article  CAS  Google Scholar 

  18. Dong, Q., & Gu, L. (2002). European Polymer Journal, 38, 511–519.

    Article  CAS  Google Scholar 

  19. Scheide, J.D., Brand, K.E. (1987) US Patent 4704289.

  20. Tsai, J. S., & Su, W. C. (1991). Journal of Materials Science Letters, 10, 1253–1256.

    Article  CAS  Google Scholar 

  21. Knaul, J. Z., & Creber, K. A. M. (1997). Journal of Applied Polymer Science, 66, 117–127.

    Article  CAS  Google Scholar 

  22. Yang, G., Zhang, L., Han, H., & Zhou, J. (2001). Journal of Applied Polymer Science, 81, 3260–3267.

    Article  CAS  Google Scholar 

  23. Jung, C. (2000). Journal of Molecular Recognition, 13, 325–351.

    Article  CAS  Google Scholar 

  24. Henkel, B., & Bayer, E. (1998). Journal of Peptide Science, 4, 461–470.

    Article  CAS  Google Scholar 

  25. Liu, Y., Li, J., Yang, L., & Shi, Z. (2004). Journal of Macromolecular Science, Part A, 41, 305–316.

    Article  Google Scholar 

  26. Sailaja, R. R. N., Girija, B. G., Giridhar, M., & Balasubramanian, N. (2008). Journal of Materials Science, 43, 64–74.

    Article  CAS  Google Scholar 

  27. Liu, Y., Zhang, Y., Liu, Z., & Deng, K. (2002). European Polymer Journal, 38, 1619–1625.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr. A. Rajaram, CLRI for his help in SEM analysis. Authors thank the Council of Scientific and Industrial Research (CSIR) for providing financial support under Young Scientist Award project scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palanisamy Thanikaivelan.

Additional information

Presented at the 1st International Conference on Multifunctional, Hybrid, and Nanomaterials, Tours, France, 15–19 March 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudha, T.B., Thanikaivelan, P., Ashokkumar, M. et al. Structural and Thermal Investigations of Biomimetically Grown Casein–Soy Hybrid Protein Fibers. Appl Biochem Biotechnol 163, 247–257 (2011). https://doi.org/10.1007/s12010-010-9034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9034-9

Keywords

Navigation