Skip to main content
Log in

Statins: 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) Reductase Inhibitors Demonstrate Anti-Atherosclerotic Character due to Their Antioxidant Capacity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease of multiple etiologies. It is associated with the accumulation of oxidized lipids in arterial lesions leading to coronary heart disease. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (commonly known as statins) are widely used in cardiovascular disease prevention to lower the cholesterol. The antioxidant activity of HMG-CoA reductase inhibitors was studied by lipid peroxidation inhibition assay, DPPH, and hydroxyl radical scavenging-activity methods. The lovastatin (93%) and simvastatin (96%) showed significant action of lipid peroxidation inhibition compared to other HMG-CoA reductase inhibitors. The DPPH radical and hydroxyl radical scavenging activity of simvastatin was 38% and 33%, respectively. The oxidative modification of serum lipid due to reactive oxygen species causes atherosclerosis. This study revealed the importance of lovastatin and simvastatin to prevent oxidative stress-related cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Istvan, E. (2003). Atherosclerosis. Supplements, 4, 3–8.

    Article  CAS  Google Scholar 

  2. Istvan, E., & Deisenhofer, J. (2001). Science, 292, 1160–1164.

    Article  CAS  Google Scholar 

  3. Brown, A. (2007). Clinical and Experimental Pharmacology & Physiology, 3, 135–141.

    Article  Google Scholar 

  4. Plosker, G., & Wagstaff, A. (1996). Drugs, 51, 433–459.

    Article  CAS  Google Scholar 

  5. Manzoni, M., & Rollini, M. (2002). Applied Microbiology and Biotechnology, 58, 555–564.

    Article  CAS  Google Scholar 

  6. Suzumura, K., & Narita, H. (1999). Chemical & Pharmaceutical Bulletin, 47, 1477–1480.

    CAS  Google Scholar 

  7. Suzumura, K., & Suzuki, T. (1999). Biochemical Pharmacology, 57, 697–703.

    Article  CAS  Google Scholar 

  8. Mitani, H., & Hayashi, S. (1996). British Journal of Pharmacology, 119, 1269–1275.

    CAS  Google Scholar 

  9. Meneghini, R. (1997). Free Radical Biology & Medicine, 23, 783–792.

    Article  CAS  Google Scholar 

  10. Stadtman, E., & Berlett, B. (1998). Drug Metabolism Reviews, 30, 225–243.

    Article  CAS  Google Scholar 

  11. Butterfield, D., & Scapagnini, G. (2002). The Journal of Nutritional Biochemistry, 13, 444–461.

    Article  CAS  Google Scholar 

  12. Pryor, W., & Ann, N. (1982). Academic Science, 393, 1–22.

    Article  CAS  Google Scholar 

  13. Sastre, J., & Viña, J. (2000). Free Radical Research, 32, 189–198.

    Article  CAS  Google Scholar 

  14. Corsini, A., & Soma, V. (1996). Cardiologist, 87, 458–468.

    Article  CAS  Google Scholar 

  15. Dhale, M., & Vijayalakshmi, G. (2007). Journal of Applied Microbiology, 103, 2168–2173.

    Article  CAS  Google Scholar 

  16. Blois, M. (1958). Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  17. Singh, R., & Jayaprakasha, G. (2002). Journal of Agricultural and Food Chemistry, 50, 81–86.

    Article  CAS  Google Scholar 

  18. Steinberg, D., & Witztum, J. (1989). The New England Journal of Medicine, 320, 915–924.

    Article  CAS  Google Scholar 

  19. Henriksen, T., & Steinberg, D. (1981). Proceedings of the National Academy of Sciences of the United States of America, 78, 6499–6503.

    Article  CAS  Google Scholar 

  20. Kunjathoor, V., & Freeman, M. (2002). The Journal of Biological Chemistry, 277, 49982–49988.

    Article  CAS  Google Scholar 

  21. Vaya, J., & Aviram, M. (2001). Current Medicinal Chemistry, 18, 99–117.

    Google Scholar 

  22. Gordon, M. (2001). Measuring antioxidant activity. In J. Pokorny, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food: practical applications (pp. 71–84). Cambridge: Woodhead Publishing.

  23. Baskar, A., & Subramanian, P. (2004). Cellular & Molecular Biology Letters, 9, 665–673.

    CAS  Google Scholar 

  24. Takemoto, M., & Liao, J. (2001). The Journal of Clinical Investigation, 108, 1429–1437.

    CAS  Google Scholar 

  25. Chaudiere, J., & Ferrari-Iliou, R. (1999). Food and Chemical Toxicology, 37, 949–962.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

H. P. Mohan-Kumari acknowledge CSIR, New-Delhi and Dr. V. Prakash, Director, CFTRI, Mysore for providing research fellowship and facility to carry out this work respectively. V. Gaonkar and S. Keni thank Dr. Satish R. Shetye, Director, NIO, Dona Paula, Goa for providing the facility to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Appasaheb Dhale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puttananjaiah, MK.H., Dhale, M.A., Gaonkar, V. et al. Statins: 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) Reductase Inhibitors Demonstrate Anti-Atherosclerotic Character due to Their Antioxidant Capacity. Appl Biochem Biotechnol 163, 215–222 (2011). https://doi.org/10.1007/s12010-010-9031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9031-z

Keywords

Navigation