Skip to main content
Log in

Accumulation of Poly[(R)-3-hydroxyalkanoates] in Enterobacter cloacae SU-1 During Growth with Two Different Carbon Sources in Batch Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are polymers of hydroxyalkanoate, which are accumulated by many bacteria as food storage material under excess carbon source and limited nitrogen source. In our study, Enterobacter cloacae SU-1 isolated from the rhizospheric soil of Arachis hypogea was allowed to grow as batch culture in minimal media containing either glucose or lactose, and the pattern of PHA accumulation by E. cloacae SU-1 was studied. E. cloacae SU-1 was found to accumulate 94% of PHA/dry weight of the organism in 8 g/l lactose-containing medium. When the monomeric units of PHA of E. cloacae SU-1 was analyzed by gas chromatography, it was also found to accumulate medium chain length PHA 3-hydroxyoctanoate (3HO)/3-hydroxyhexanoate (3HH) in the presence of glucose and lactose, but the ratio of these monomers differed as 11:1 and 6:1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elbanna, K., Tina, L., Eversloh, K., Jendrossek, D., Luftmann, H., & Steinbuchel, A. (2004). Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Archives of Microbiology, 182, 212–225.

    Article  CAS  Google Scholar 

  2. Poirier, Y. (2002). Polyhydroxyalkanoate synthesis in plants as tool for biotechnology and basic studies of lipid metabolism. Progress in Lipid Research, 41, 131–155.

    Article  CAS  Google Scholar 

  3. Page, W. J., Manchak, J., & Rudy, B. (1992). Formation of poly(hydroxybutyrae-co-valerate) by Azotobacter venelandii UWD. Applied and Environmental Microbiology, 58, 2866–2873.

    CAS  Google Scholar 

  4. Rehm, B. H. A., & Steinbuchel, A. (1999). Biochemical and genetic analysis of the PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules, 13, 83–88.

    Google Scholar 

  5. Langenbach, S., Rehm, B. H. A., & Steinbuchel, A. (1997). Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli. Microbiol Biotechnology, 31, 329–333.

    Google Scholar 

  6. Qi, Q. S., Steinbüchel, A., & Rehm, B. H. A. (1998). Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): Inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiology Letters, 167, 89–94.

    CAS  Google Scholar 

  7. Rehm, B. H. A., Kruger, N., & Steinbuchel, A. (1998). A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The Journal of Biological Chemistry, 273, 24044–24051.

    Article  CAS  Google Scholar 

  8. Chan, P. L., Yu, V., Wai, L., & Yu, H. F. (2006). Production of medium-chain-length polyhydroxyalkanoatess by Pseudomonas aeruginosa with fatty acids and alternative carbon sources. Applied Biochemistry and Biotechnology, 6(129–132), 933–941.

    Article  Google Scholar 

  9. Lakshman, K., & Shamala, T. R. (2003). Enhanced biosynthesis of polyhydroxyalkanoatess in a mutant strain of Rhizobium meliloti. Biotechnology Letters, 25, 115–119.

    Article  CAS  Google Scholar 

  10. Potter, M., & Steinbuchel, A. (2005). Poly (3-hydroxybutrate) granule associated proteins: Impacts on poly(3-hydroxybutrate) synthesis and degradation. Biomacromolecules, 6, 552–560.

    Article  Google Scholar 

  11. Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letter Applied Microbiology., 8, 151–156.

    Article  CAS  Google Scholar 

  12. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  13. Law, K. H., Leung, Y. C., Lawford, H., Chua, H., Lo, W. H., & Yu, P. H. (2001). Production of polyhydroxybutrate by Bacillus species isolated from municipal activated sludge. Applied Biochemistry and Biotechnology, 91–93, 515–524.

    Article  Google Scholar 

  14. Omar, S., Rayes, A., Eqaab, A., VoB, I., & Steinbüchel, A. (2001). Optimization of cell growth and poly(3-hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnology Letters, 23(14), 1119–1123.

    Article  CAS  Google Scholar 

  15. Joshi, P. A., & Jaysawal, S. R. (2010). Isolation and characterization of poly-hydroxyalkanoate producing bacteria from sewage sample. Journal of Cell and Tissue Research, 10(1), 2165–2168.

    Google Scholar 

  16. Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P., Eggink, G., & Witholt, B. (1988). Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly(R)-3-hydroxyalkanoates and poly(R)-3-hydroxyalkanoates. Applied and Environmental Microbiology, 54, 2924–2932.

    CAS  Google Scholar 

  17. Haywood, G. W., Anderson, A. J., Ewing, D. F., & Dawes, E. A. (1990). Accumulation of a polyhydroxyalkanoate containing primarily3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB40135. Applied and Environmental Microbiology, 56, 3354–3359.

    CAS  Google Scholar 

  18. Rehm, B. H. A. (2006). Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: The key role of polyester synthases. Biotechnology Letters, 28, 207–213.

    Article  CAS  Google Scholar 

  19. Fukui, T., Shiomi, N., & Doi, Y. (1998). Expression and characterization R-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. Journal of Bacteriology, 180, 667–673.

    CAS  Google Scholar 

  20. Hoffmann, N., Amara, A. A., Beermann, B. B., Qi, Q., Hinz, H. J., & Rehm, B. H. A. (2002). Biochemical characterization of Pseudomonas putida 3-hydroxyacyl ACP: CoA transacylase, which diverts intermediates of fatty acids de novo biosynthesis. The Journal of Biological Chemistry, 277, 42926–42936.

    Article  CAS  Google Scholar 

  21. Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54, 450–472.

    CAS  Google Scholar 

  22. Steinbuchel, A. (1991). Polyhydroxyalkanoaic acids. In D. Byrom (Ed.), Biomaterials: Novel materials from biological sources (pp. 124–213). New York: Stockton.

    Google Scholar 

  23. Steinbuchel, A., & Pieper, U. (1992). Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from single unrelated carbon sources by a mutant of Alcaligenes eutrophus. Applied Microbiology and Biotechnology, 37, 1–6.

    Google Scholar 

  24. He, W. N., Tian, W. D., Zhang, G., & Chen, G. Q. (1998). Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiology Letters, 169, 45–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony V. Samrot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samrot, A.V., Avinesh, R.B., Sukeetha, S.D. et al. Accumulation of Poly[(R)-3-hydroxyalkanoates] in Enterobacter cloacae SU-1 During Growth with Two Different Carbon Sources in Batch Culture. Appl Biochem Biotechnol 163, 195–203 (2011). https://doi.org/10.1007/s12010-010-9028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9028-7

Keywords

Navigation