Advertisement

Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 186–194 | Cite as

Redesign the α/β Fold to Enhance the Stability of Mannanase Man23 from Bacillus subtilis

  • Hai-Yan Zhou
  • Hong-Ya Pan
  • Li-Qun Rao
  • Yong-Yao WuEmail author
Article

Abstract

In this work, we engineered the α/β fold of mannanase Man23 based on its molecular structure analysis to obtain more stable variants. By introducing 31 single-site mutations in the α/β fold and shuffling them, the incorporation of four mutations (K178R, K207R, N340R, and S354R) displayed a good balance between high activity and stability at higher temperature and broader pH. This quartet variant was characterized by an almost threefold increased activity and a sevenfold increased stability compared to native mannanase Man23. Our results suggest that such work is safe to increase our target protein stability with no loss of activity.

Keywords

Mannanase Protein stability Rational design α/β Fold 

References

  1. 1.
    Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). Bioinformatics, 22, 195–201.CrossRefGoogle Scholar
  2. 2.
    Ausubel, F. M., Kingston, R. E., & Seidman, J. G. (2005). Current protocols in molecular biology (4th ed.). Beijing: Science Press.Google Scholar
  3. 3.
    Barbara, M. T., & Jens, E. N. (2007). Protein Science, 16, 239–249.Google Scholar
  4. 4.
    Becktel, W. J., & Schellman, J. A. (1987). Biopolymers, 26, 1859–1877.CrossRefGoogle Scholar
  5. 5.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  6. 6.
    Cantor, C. R, & Schimmel, P. R. (1980). Biophysical chemistry. In C. R. Cantor, & P. R. Schimmel (Eds). New York: W. H. Freeman & Co.Google Scholar
  7. 7.
    Claire, V., & Gregory, J. Z. (2001). Microbiology and Molecular Biology Reviews, 65, 1–43.CrossRefGoogle Scholar
  8. 8.
    Gershenson, A., Schauerte, J. A., Giver, L., & Arnold, F. H. (2000). Biochemistry, 39, 4658–4665.CrossRefGoogle Scholar
  9. 9.
    Hatada, Y., Takeda, N., & Hirasawa, K. (2005). Extremophiles, 9, 497–500.CrossRefGoogle Scholar
  10. 10.
    Ichikawa, J. K., & Clarke, S. (1998). Archives of Biochemistry and Biophysics, 358, 222–231.CrossRefGoogle Scholar
  11. 11.
    Jaenicke, R., & Bohm, G. (1998). Current Opinion in Structural Biology, 8, 738–748.CrossRefGoogle Scholar
  12. 12.
    Joern, J. M., Meinhold, P., & Arnold, F. H. (2002). Journal of Molecular Biology, 316, 643–656.CrossRefGoogle Scholar
  13. 13.
    Kimura, S., Nakamura, H., Hashimoto, T., Oobatake, M., & Kanaya, S. (1992). The Journal of Biological Chemistry, 267, 21535–21542.Google Scholar
  14. 14.
    Kote, N. V., Patil, A. G., & Mulimani, V. H. (2009). Applied Biochemistry and Biotechnology, 152, 213–223.CrossRefGoogle Scholar
  15. 15.
    Lin, S. S., Dou, W. F., Xu, H., Li, H. Z., & Ma, Y. (2007). Applied Microbiology and Biotechnology, 75, 1015–1022.CrossRefGoogle Scholar
  16. 16.
    McCleary, B. V. (1978). Carbohydrate Research, 67, 213–221.CrossRefGoogle Scholar
  17. 17.
    McCleary, B. V. (1988). Methods in Enzymology, 160, 74–86.CrossRefGoogle Scholar
  18. 18.
    Samriti, D., & Jagdeep, K. (2007). Critical Reviews in Biotechnology, 27, 197–216.CrossRefGoogle Scholar
  19. 19.
    Sandeep, K., Chung-Jung, T., & Ruth, N. (2000). Protein Engineering, Design & Selection, 13, 179–191.CrossRefGoogle Scholar
  20. 20.
    Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). Nucleic Acids Research, 31, 3381–3385.CrossRefGoogle Scholar
  21. 21.
    Sergei, A. F., Jeffrey, M. L., Alvaro, M., Po-Pu, L., & Hiroyuki, N. (2004). Plant Physiology, 134, 1080–1087.CrossRefGoogle Scholar
  22. 22.
    Sterner, R., Kleemann, H. S., Szadkowski, H., Lustig, M. H., & Kirschner, K. (1996). Protein Science, 5, 2000–2008.CrossRefGoogle Scholar
  23. 23.
    Wen-Chen, S., Ningyan, Z., Li, X., Vincent, M., & Aleksey, Z. (2004). Protein Engineering, Design & Selection, 17, 133–140.CrossRefGoogle Scholar
  24. 24.
    Tracy, F., Denise, B., & Peter, B. (1999). The International Journal of Biochemistry & Cell Biology, 31, 853–859.CrossRefGoogle Scholar
  25. 25.
    Viikari, L., Kantelinen, A., Ratto, M., Sundquist, J. (1991) Enzymes in biomass conversion. In G. F., Leatham, & M. E., Himmel (Eds). Washington DC: American Chemical SocietyGoogle Scholar
  26. 26.
    Zavodszky, P., Kardos, J., Svingor, A., & Petsko, G. A. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 7406–7413.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hai-Yan Zhou
    • 1
  • Hong-Ya Pan
    • 2
  • Li-Qun Rao
    • 3
  • Yong-Yao Wu
    • 3
    Email author
  1. 1.The Center of Analysis and MeasurementHunan Agricultural UniversityChangshaChina
  2. 2.College of Foreign LanguageHunan Agricultural UniversityChangshaChina
  3. 3.College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina

Personalised recommendations