Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 173–185 | Cite as

Integrated Downstream Processing of Lactoperoxidase from Milk Whey Involving Aqueous Two-Phase Extraction and Ultrasound-Assisted Ultrafiltration

  • K. E. Nandini
  • Navin K. RastogiEmail author


The present work involves the adoption of an integrated approach for the purification of lactoperoxidase from milk whey by coupling aqueous two-phase extraction (ATPE) with ultrasound-assisted ultrafiltration. The effect of system parameters of ATPE such as type of phase system, polyethylene glycol (PEG) molecular mass, system pH, tie line length and phase volume ratio was evaluated so as to obtain differential partitioning of contaminant proteins and lactoperoxidase in top and bottom phases, respectively. PEG 6000-potassium phosphate system was found to be suitable for the maximum activity recovery of lactoperoxidase 150.70% leading to 2.31-fold purity. Further, concentration and purification of enzyme was attempted using ultrafiltration. The activity recovery and purification factor achieved after ultrafiltration were 149.85% and 3.53-fold, respectively. To optimise productivity and cost-effectiveness of integrated process, influence of ultrasound for the enhancement of permeate flux during ultrafiltration was also investigated. Intermittent use of ultrasound along with stirring (2 min acoustic and 2 min stirring) resulted in increased permeate flux from 0.94 to 2.18 l/m2 h in comparison to the ultrafiltration without ultrasound. The use of ultrasound during ultrafiltration resulted in increase in flux, but there was no significant change in activity recovery and purification factor. The integrated approach involving ATPE and ultrafiltration may prove to be a feasible method for the downstream processing of lactoperoxidase from milk whey.


Lactoperoxidase Ultrasound Ultrafiltration ATPE Purification Integrated process 



Authors thank Dr. V. Prakash, Director, CFTRI, Mysore for encouragement. Authors thank Dr. K.S.M.S. Raghavarao, Head, Department of Food Engineering for valuable suggestions. The author Nandini expresses her gratitude and sincere thanks to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing senior research fellowship.


  1. 1.
    Kussendrager, K. D., & Hooijdonk, A. C. M. (2000). Br J Nutr, 84, 19–25.CrossRefGoogle Scholar
  2. 2.
    Elliot, R. M., McLay, J. C., Kennedy, M. J., & Simmond, R. S. (2004). Int J Food Microbiol, 91, 73–81.CrossRefGoogle Scholar
  3. 3.
    Touch, V., Hayakawa, S., Yamada, S., & Kaneko, S. (2004). Int J Food Microbiol, 93, 175–183.CrossRefGoogle Scholar
  4. 4.
    Andersson, J., & Mattiasson, B. (2006). J Chromatogr A, 1107, 88–95.CrossRefGoogle Scholar
  5. 5.
    Min, S., Krochta, J. M., & Rumsey, T. R. (2007). J Food Eng, 80, 1116–1124.CrossRefGoogle Scholar
  6. 6.
    Ozdemir, H., Aygul, I., & Küfrevioglu, O. I. (2001). Prep Biochem Biotechnol, 31, 125–134.CrossRefGoogle Scholar
  7. 7.
    Doultani, S., Turhan, K. N., & Etzel, M. R. (2004). Process Biochem, 39, 1737–1743.CrossRefGoogle Scholar
  8. 8.
    Billakanti, J. M., & Fee, C. J. (2009). Biotechnol Bioeng, 103, 1155–1163.CrossRefGoogle Scholar
  9. 9.
    Nandini, K. E., & Rastogi, N. K. (2010). Biotechnology Progress, 26, 763–771.CrossRefGoogle Scholar
  10. 10.
    Souza, R. L. D., Barbosa, J. M. P., Zanin, G. M., Lobão, M. W. N., Soares, C. M. F., & Lima, Á. S. (2010). Applied Biochemistry and Biotechnology, 161, 288–300. doi: 10.1007/s12010-010-8907-2.CrossRefGoogle Scholar
  11. 11.
    Rajni, H. K. (2000). Aqueous two phase systems methods and protocols. Hoboken: Humana.Google Scholar
  12. 12.
    Nandini, K. E., & Rastogi, N. K. (2009). Process Biochem, 44, 1172–1176.CrossRefGoogle Scholar
  13. 13.
    Raghavarao, K. S. M. S., Rastogi, N. K., Gowathman, M. K., & Karanth, N. G. (1995). Advances in applied microbiology, vol 41 (pp. 97–172). New York: Academic.CrossRefGoogle Scholar
  14. 14.
    Simon, A., Penpenic, L., Gondrexon, N., Taha, S., & Dorange, G. (2000). Ultrason Sonochem, 7, 183–186.CrossRefGoogle Scholar
  15. 15.
    Smythe, M. C., & Wakeman, R. J. (2000). Ultrasonics, 38, 657–661.CrossRefGoogle Scholar
  16. 16.
    Saxena, A., Tripathi, B. P., Kumar, M., & Shahi, V. K. (2009). Adv Colloid Interface Sci, 145, 1–22.CrossRefGoogle Scholar
  17. 17.
    Muthukumaran, S., Kentish, S. E., Ashokkumar, M., & Stevens, G. W. (2005). J Membr Sci, 258, 106–114.CrossRefGoogle Scholar
  18. 18.
    Chen, D., Weavers, L. K., Walker, H. W., & Lenhart, J. J. (2006). J Membr Sci, 276, 135–144.CrossRefGoogle Scholar
  19. 19.
    Teng, M. Y., Lin, S. H., Wu, C. Y., & Juang, R. S. (2006). J Membr Sci, 281, 103–110.CrossRefGoogle Scholar
  20. 20.
    Albertson, P. Å. (1986). Partition of Cell Particles and Macromolecules (3rd ed.). New York: Wiley.Google Scholar
  21. 21.
    Zaslavsky, B. Y. (1995). Aqueous two-phase partitioning, physical chemistry and bioanalytical applications. New York: Marcel Dekker.Google Scholar
  22. 22.
    Nandini, K. E., & Rastogi, N. K. (2009). Food and Bioprocess Technology, doi:  10.1007/s11947-008-0160-0.
  23. 23.
    Morrison, M. (1970). In H. Tabor & C. Tabor (Eds.), Methods in Enzymology (pp. 653–657). New York: Academic.Google Scholar
  24. 24.
    Bradford, M. M. (1976). Anal Biochem, 72, 248–254.CrossRefGoogle Scholar
  25. 25.
    Marcos, J. C., Fonseca, L. P., Ramalho, M. T., & Cabral, J. M. S. (1999). J Chromatogr B, 734, 15–22.CrossRefGoogle Scholar
  26. 26.
    Deuscher, M. (1990). Electrophoretic Methods, 182, 425–488.Google Scholar
  27. 27.
    Chen, J. P. (1992). J Ferment Bioeng, 73, 140–147.CrossRefGoogle Scholar
  28. 28.
    Palomares, M., & Hernandez, M. (1998). J Chromatogr B, 711, 81–90.CrossRefGoogle Scholar
  29. 29.
    Anandharamakrishna, C., Raghavendra, S. N., Barhate, R. S., Hanumesh, U., & Raghavarao, K. S. M. S. (2005). Food Bioprod Process, 83, 191–197.CrossRefGoogle Scholar
  30. 30.
    Babu, B. R., Rastogi, N. K., & Raghavarao, K. S. M. S. (2008). Chem Eng Process, 47, 83–89.Google Scholar
  31. 31.
    Fuda, E., Jauregi, P., & Pyle, D. L. (2004). Biotechnol Prog, 20, 514–525.CrossRefGoogle Scholar
  32. 32.
    Nielsen, A. H., Justesen, S. F. L., & Thomas, O. R. T. (2004). J Biotechnol, 113, 247–262.CrossRefGoogle Scholar
  33. 33.
    Benavides, J., & Palomares, M. (2004). J Chromatogr B, 807, 33–38.CrossRefGoogle Scholar
  34. 34.
    Mayerhoff, Z. D. V. L., Roberto, I. C., & Franco, T. T. (2004). Biochem Eng J, 18, 217–223.CrossRefGoogle Scholar
  35. 35.
    Porto, T. S., Silva, M. G. M., Porto, C. S., Cavalcanti, M. T. H., Neto, B. B., Lima, F. J. L., et al. (2008). Chem Eng Process, 47, 716–721.Google Scholar
  36. 36.
    Cavalcanti, M. T. H., Porto, T. S., Neto, B. B., Lima, F. J. L., Porto, A. L. F., & Pessoa, J. A. (2006). Journal of Chromatogrphy B, 833, 135–140.CrossRefGoogle Scholar
  37. 37.
    Chaves, A. C., Silva, L. N., Abath, F. G. C., Pereira, V. R. A., Filho, J. L. L., Porto, A. L. F., et al. (2000). Bioprocess Eng, 23, 435–438.CrossRefGoogle Scholar
  38. 38.
    Chethana, S., Nayak, C. A., & Raghavarao, K. S. M. S. (2007). J Food Eng, 81, 679–687.CrossRefGoogle Scholar
  39. 39.
    Kyllonen, H. M., Pirkonen, P., & Nystrom, M. (2007). Desalination, 181, 319–335.CrossRefGoogle Scholar
  40. 40.
    Cai, M., Wang, S., Zheng, Y., & Liang, H. (2009). Effects of ultrasound on ultrafiltration of Radix astragalus extract and cleaning of fouled membrane. Sep Purif Technol, 68, 351–356.CrossRefGoogle Scholar
  41. 41.
    Juang, R. S., & Lin, K. H. (2004). J Membr Sci, 243, 115–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Food Engineering, Central Food Technological Research InstituteCouncil of Scientific and Industrial ResearchMysoreIndia

Personalised recommendations