Advertisement

Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 162–172 | Cite as

Effects of Low-Shear Modeled Microgravity on the Characterization of Recombinant β-D-Glucuronidase Expressed in Pichia pastoris

  • Feng Qi
  • DaZhang Dai
  • Yanli Liu
  • Imdad Kaleem
  • Chun LiEmail author
Article

Abstract

In this study, we used a high-aspect-ratio vessel (HARV), which could model environment of microgravity on ground to investigate for the first time the effects of low-shear modeled microgravity (LSMMG) on the characterization of recombinant β-D-glucuronidase expressed in Pichia pastoris. The β-D-glucuronidase gene (GenBank accession no. EU095019) derived from Penicillium purpurogenum Li-3 encoding β-D-glucuronidase (PGUS) was expressed in P. pastoris GS115 in two different environments of LSMMG and normal gravity (NG). Results manifested that both LSMMG and NG conditions had insignificant effects on temperature and pH activity (optimal temperature and pH were 55 and 5.0 °C, respectively) and characteristic stability of recombinant PGUS. However, the catalytic activity of recombinant PGUS expressed under LSMMG was less affected by metal ions and EDTA as compared with that of NG. Furthermore, K m value of the recombinant PGUS expressed under LSMMG was nearly one fifth of that under NG (1.72 vs. 7.72), whereas catalytic efficiency (k cat/K m) of PGUS expressed under LSMMG (13.55) was 3.7 times higher than that of NG (3.61). The results initially reveal the significant alterations in catalytic properties of recombinant enzyme in response to LSMMG environment and have potential application in bioprocessing and biocatalysis.

Keywords

Low-shear modeled microgravity (LSMMG) Normal gravity (NG) Pichia pastoris Recombinant PGUS 

Notes

Acknowledgments

This work is supported by the National “863” High-Tech Project (2008AA12A218-2) and Natural Science Foundation of China (20776017, 20976014) and Natural Science Foundation of Beijing (5072028).

References

  1. 1.
    Hammond, T. G., Lewis, F. C., Goodwin, T. J., Linnehan, R. M., Wolf, D. A., Hire, K. P., et al. (1999). Nature Medicine, 5, 359.CrossRefGoogle Scholar
  2. 2.
    Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., LeBlanc, C. L., Bentrup, K. H. Z., et al. (2003). Journal of Microbiological Methods, 54, 1–11.CrossRefGoogle Scholar
  3. 3.
    Baker, P. W., Meyer, M. L., & Leff, L. G. (2004). Microgravity Science and Technology, 15, 39–44.CrossRefGoogle Scholar
  4. 4.
    Demain, A. L., & Fang, A. (2001). Chemical Record, 1, 333–346.CrossRefGoogle Scholar
  5. 5.
    Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2000). Letters in Applied Microbiology, 31, 39–41.CrossRefGoogle Scholar
  6. 6.
    Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Applied and Environmental Microbiology, 63, 4090–4092.Google Scholar
  7. 7.
    Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Current Microbiology, 34, 199–204.CrossRefGoogle Scholar
  8. 8.
    Brown, R. B., Klaus, D., & Todd, P. (2002). Microgravity Science and Technology, 13, 24–29.CrossRefGoogle Scholar
  9. 9.
    Schwarz, R. P., Goodwin, T. J., & Wolf, D. A. (1992). Journal of Tissue Culture Methods, 14, 51–57.CrossRefGoogle Scholar
  10. 10.
    Hammond, T. G., & Hammond, J. M. (2001). American Journal of Physiology. Renal Physiology, 281, F12–F25.Google Scholar
  11. 11.
    Schwarz, R. P., Wolf, D. A., & Trinh, T. (1991). Rotating cell culture vessel. U.S. patent 5,026,650.Google Scholar
  12. 12.
    Coleman, C. B., Allen, P. L., Valles, J. M., & Hammond, T. G. (2008). Biotechnology and Bioengineering, 100, 334–343.CrossRefGoogle Scholar
  13. 13.
    Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbiology and Molecular Biology Reviews, 68, 365–361.CrossRefGoogle Scholar
  14. 14.
    Klaus, D. M. (1998). Trends in Biotechnology, 16, 369–373.CrossRefGoogle Scholar
  15. 15.
    Maccarrone, M., Bari, M., Battista, N., & Finazzi-Agro, A. (2001). Biophysical Chemistry, 90, 97–101.CrossRefGoogle Scholar
  16. 16.
    Ranaldi, F., Vanni, P., & Giachetti, E. (2003). Biophysical Chemistry, 103, 169–177.CrossRefGoogle Scholar
  17. 17.
    Feng, S. J., Li, C., Xu, X. L., & Wang, X. Y. (2006). Journal of Molecular Catalysis B-Enzymetic, 43, 63–67.CrossRefGoogle Scholar
  18. 18.
    Xiang, L., Qi, F., Dai, D.Z., Li, C., Jiang, Y.D. (2010). Applied Biochemistry and Biotechnology, 162, 654–661.Google Scholar
  19. 19.
    Matsui, S., Matsumoto, H., Sonoda, Y., Ando, K., Aizu-Yokota, E., Sato, T., et al. (2004). International Immunopharmacology, 4, 1633–1644.CrossRefGoogle Scholar
  20. 20.
    Cereghino, J. L., & Cregg, J. M. (2000). FEMS Microbiology Reviews, 24, 45–66.CrossRefGoogle Scholar
  21. 21.
    Sreekrishna, K., Brankamp, R. G., Kropp, K. E., Blankenshio, D. T., Tsay, J. T., Smith, P. L., et al. (1997). Gene, 190, 55–62.CrossRefGoogle Scholar
  22. 22.
    Sambrook, J., & Russell, D. W. J. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory.Google Scholar
  23. 23.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  24. 24.
    Kacena, M. A., Merrell, G. A., Manfredi, B., Smith, E. E., Klaus, D. M., & Todd, P. (1999). Applied Microbiology and Biotechnology, 51, 229–234.CrossRefGoogle Scholar
  25. 25.
    Xia, W. S., Liu, P., & Liu, J. (2008). Bioresource Technology, 99, 6751–6762.CrossRefGoogle Scholar
  26. 26.
    Mori, S., Akao, S., Nankai, H., Hashimoto, W., Mikami, B., & Murata, K. (2003). Protein Expression and Purification, 29, 77–84.CrossRefGoogle Scholar
  27. 27.
    Sheehan, K. B., McInnerney, K., Purevdorj-Gage, B., Altenburg, S. D., & Hyman, L. E. (2007). BMC Genomics, 8, 1–12.CrossRefGoogle Scholar
  28. 28.
    Johanson, K., Allen, P. L., Lewis, F., Cubano, L. A., Hyman, L. E., & Hammond, T. G. (2002). Journal of Applied Physiology, 93, 2171–2180.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Feng Qi
    • 1
  • DaZhang Dai
    • 1
  • Yanli Liu
    • 3
  • Imdad Kaleem
    • 1
  • Chun Li
    • 1
    • 2
    Email author
  1. 1.School of Life ScienceBeijing Institute of TechnologyHaidian DistrictBeijingPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringShihezi UniversityShiheziPeople’s Republic of China
  3. 3.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations