Advertisement

Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 102–111 | Cite as

Esterification Synthesis of Ethyl Oleate in Solvent-Free System Catalyzed by Lipase Membrane from Fermentation Broth

  • Wei-Na Li
  • Bi-Qiang Chen
  • Tian-Wei TanEmail author
Article

Abstract

In this study, the immobilized lipase was prepared by fabric membrane adsorption in fermentation broth. The lipase immobilization method in fermentation broth was optimized on broth activity units and pH adjustments. The viscose fermentation broth can be used with a certain percentage of dilution based on the original broth activity units. The fermentation broth can be processed directly without pH adjustment. In addition, the oleic acid ethyl ester production in solvent-free system catalyzed by the immobilized lipase was optimized. The molar ratio of ethanol to oil acid, the enzyme amount, the molecular amount, and the temperature were 1:1, 12% (w/w), 9% (w/w)(based the total amount of reaction mixture), and 30 °C, respectively. Finally, the optimal condition afforded at least 19 reuse numbers with esterification rate above 80% under stepwise addition of ethanol. Due to simple lipase immobilization preparation, acceptable esterification result during long-time batch reactions and lower cost; the whole process was suitable for industrial ethyl oleate production.

Keywords

Candida sp. 99–125 Immobilized lipase membrane Fermentation broth Esterification Oleic acid Solvent-free system 

Notes

Acknowledgements

This project has been funded by the National High Technology Research and Development Program of China (2006AA020203), the National Nature Science Foundation of China (20876011), the State Key Development Program for Basic Research of China (2007CB714304), and the Natural Science Foundation of Beijing, China (2071002).

References

  1. 1.
    Enweremadu, C. C., & Mbarawa, M. M. (2009). Renewable & Sustainable Energy Reviews, 13, 2205–2224.CrossRefGoogle Scholar
  2. 2.
    Lien, Y. S., Hsieh, L. S., & Wu, J. C. S. (2010). Industrial and Engineering Chemistry Research, 49(5), 2118–2121.CrossRefGoogle Scholar
  3. 3.
    Hanh, H. D., Dong, N. T., Okitsu, K., Nishimura, R., & Maeda, Y. (2009). Renewable Energy, 34, 780–783.CrossRefGoogle Scholar
  4. 4.
    Lai, C. C., Zullaikah, S., Vali, S. R., & Ju, Y. H. (2005). Journal of Chemical Technology and Biotechnology, 80, 331–337.CrossRefGoogle Scholar
  5. 5.
    Ruzich, N. I., & Bassi, A. S. (2010). Canadian Journal of Chemical Engineering, 88, 277–282.CrossRefGoogle Scholar
  6. 6.
    Araia, S., Nakashimab, K., Taninoc, T., & Oginoa, C. (2010). Enzyme and Microbial Technology, 46, 51–55.CrossRefGoogle Scholar
  7. 7.
    Foresti, M. L., & Ferreira, M. L. (2005). Catalysis Today, 107–108, 23–30.CrossRefGoogle Scholar
  8. 8.
    Sandoval, G., Condoret, J. S., Monsan, P., & Marty, A. (2002). Biotechnology and Bioengineering, 78, 313–320.CrossRefGoogle Scholar
  9. 9.
    Trubiano, G., Borio, D., & Ferreira, M. L. (2004). Biomacromolecules, 5, 1832–1840.CrossRefGoogle Scholar
  10. 10.
    Foresti, M. L., Pedernera, M., Bucalá, V., & Ferreira, M. L. (2007). Enzyme and Microbial Technology, 41, 62–70.CrossRefGoogle Scholar
  11. 11.
    Goldberg, M., Thomas, D., & Legoy, M. D. (1990). European Journal of Biochemistry, 190(3), 603–609.CrossRefGoogle Scholar
  12. 12.
    Fjerbaek, L., Christensen, K. V., & Norddahl, B. (2009). Biotechnology and Bioengineering, 102(5), 1298–1315.CrossRefGoogle Scholar
  13. 13.
    Nordblad, M., & Adlercreutz, P. (2008). Biotechnology and Bioengineering, 99, 1518–1524.CrossRefGoogle Scholar
  14. 14.
    Tan, T. W., Zhang, M., Wang, B. W., Ying, C. H., & Deng, L. (2003). Process Biochemistry, 39(4), 459–465.CrossRefGoogle Scholar
  15. 15.
    Yu, M., Qin, S., & Tan, T. (2007). Process Biochemistry, 42(3), 384–391.CrossRefGoogle Scholar
  16. 16.
    Souza, M. S., Aguieiras, E. C. G., da Silva, M. A. P., & Langone, M. A. P. (2009). Applied Biochemistry and Biotechnology, 154, 74–88.CrossRefGoogle Scholar
  17. 17.
    Hernández-Martín, E., & Otero, C. (2008). Bioresource Technology, 99(2), 277–286.CrossRefGoogle Scholar
  18. 18.
    Petersson, A. E. V., Adlercreutz, P., & Mattiasson, B. (2007). Biotechnology and Bioengineering, 97(2), 235–241.CrossRefGoogle Scholar
  19. 19.
    Yahya, A. R. M., Anderson, W. A., & Moo-Young, M. (1998). Enzyme and Microbial Technology, 23, 438–450.CrossRefGoogle Scholar
  20. 20.
    Rocha, J., Gil, M., & Garcia, F. (1999). Journal of Chemical Technology and Biotechnology, 74, 607–612.CrossRefGoogle Scholar
  21. 21.
    Iso, M., Chen, B., Eguchi, M., Kudo, T., & Shrestha, S. (2001). Journal of Molecular Catalysis B: Enzymatic, 16, 53–58.CrossRefGoogle Scholar
  22. 22.
    Meng, Y. H., Chen, B. Q., Yang, N., Wang, G. L., Li, Y., & Tan, T. W. (2010). Journal of Biobased Materials and Bioenergy, 4, 1–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Beijing Key Lab of BioprocessBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations