Skip to main content
Log in

Esterification Synthesis of Ethyl Oleate in Solvent-Free System Catalyzed by Lipase Membrane from Fermentation Broth

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the immobilized lipase was prepared by fabric membrane adsorption in fermentation broth. The lipase immobilization method in fermentation broth was optimized on broth activity units and pH adjustments. The viscose fermentation broth can be used with a certain percentage of dilution based on the original broth activity units. The fermentation broth can be processed directly without pH adjustment. In addition, the oleic acid ethyl ester production in solvent-free system catalyzed by the immobilized lipase was optimized. The molar ratio of ethanol to oil acid, the enzyme amount, the molecular amount, and the temperature were 1:1, 12% (w/w), 9% (w/w)(based the total amount of reaction mixture), and 30 °C, respectively. Finally, the optimal condition afforded at least 19 reuse numbers with esterification rate above 80% under stepwise addition of ethanol. Due to simple lipase immobilization preparation, acceptable esterification result during long-time batch reactions and lower cost; the whole process was suitable for industrial ethyl oleate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Enweremadu, C. C., & Mbarawa, M. M. (2009). Renewable & Sustainable Energy Reviews, 13, 2205–2224.

    Article  CAS  Google Scholar 

  2. Lien, Y. S., Hsieh, L. S., & Wu, J. C. S. (2010). Industrial and Engineering Chemistry Research, 49(5), 2118–2121.

    Article  CAS  Google Scholar 

  3. Hanh, H. D., Dong, N. T., Okitsu, K., Nishimura, R., & Maeda, Y. (2009). Renewable Energy, 34, 780–783.

    Article  CAS  Google Scholar 

  4. Lai, C. C., Zullaikah, S., Vali, S. R., & Ju, Y. H. (2005). Journal of Chemical Technology and Biotechnology, 80, 331–337.

    Article  CAS  Google Scholar 

  5. Ruzich, N. I., & Bassi, A. S. (2010). Canadian Journal of Chemical Engineering, 88, 277–282.

    Article  CAS  Google Scholar 

  6. Araia, S., Nakashimab, K., Taninoc, T., & Oginoa, C. (2010). Enzyme and Microbial Technology, 46, 51–55.

    Article  Google Scholar 

  7. Foresti, M. L., & Ferreira, M. L. (2005). Catalysis Today, 107–108, 23–30.

    Article  Google Scholar 

  8. Sandoval, G., Condoret, J. S., Monsan, P., & Marty, A. (2002). Biotechnology and Bioengineering, 78, 313–320.

    Article  CAS  Google Scholar 

  9. Trubiano, G., Borio, D., & Ferreira, M. L. (2004). Biomacromolecules, 5, 1832–1840.

    Article  CAS  Google Scholar 

  10. Foresti, M. L., Pedernera, M., Bucalá, V., & Ferreira, M. L. (2007). Enzyme and Microbial Technology, 41, 62–70.

    Article  CAS  Google Scholar 

  11. Goldberg, M., Thomas, D., & Legoy, M. D. (1990). European Journal of Biochemistry, 190(3), 603–609.

    Article  CAS  Google Scholar 

  12. Fjerbaek, L., Christensen, K. V., & Norddahl, B. (2009). Biotechnology and Bioengineering, 102(5), 1298–1315.

    Article  CAS  Google Scholar 

  13. Nordblad, M., & Adlercreutz, P. (2008). Biotechnology and Bioengineering, 99, 1518–1524.

    Article  CAS  Google Scholar 

  14. Tan, T. W., Zhang, M., Wang, B. W., Ying, C. H., & Deng, L. (2003). Process Biochemistry, 39(4), 459–465.

    Article  CAS  Google Scholar 

  15. Yu, M., Qin, S., & Tan, T. (2007). Process Biochemistry, 42(3), 384–391.

    Article  CAS  Google Scholar 

  16. Souza, M. S., Aguieiras, E. C. G., da Silva, M. A. P., & Langone, M. A. P. (2009). Applied Biochemistry and Biotechnology, 154, 74–88.

    Article  Google Scholar 

  17. Hernández-Martín, E., & Otero, C. (2008). Bioresource Technology, 99(2), 277–286.

    Article  Google Scholar 

  18. Petersson, A. E. V., Adlercreutz, P., & Mattiasson, B. (2007). Biotechnology and Bioengineering, 97(2), 235–241.

    Article  CAS  Google Scholar 

  19. Yahya, A. R. M., Anderson, W. A., & Moo-Young, M. (1998). Enzyme and Microbial Technology, 23, 438–450.

    Article  CAS  Google Scholar 

  20. Rocha, J., Gil, M., & Garcia, F. (1999). Journal of Chemical Technology and Biotechnology, 74, 607–612.

    Article  CAS  Google Scholar 

  21. Iso, M., Chen, B., Eguchi, M., Kudo, T., & Shrestha, S. (2001). Journal of Molecular Catalysis B: Enzymatic, 16, 53–58.

    Article  CAS  Google Scholar 

  22. Meng, Y. H., Chen, B. Q., Yang, N., Wang, G. L., Li, Y., & Tan, T. W. (2010). Journal of Biobased Materials and Bioenergy, 4, 1–6.

    Article  Google Scholar 

Download references

Acknowledgements

This project has been funded by the National High Technology Research and Development Program of China (2006AA020203), the National Nature Science Foundation of China (20876011), the State Key Development Program for Basic Research of China (2007CB714304), and the Natural Science Foundation of Beijing, China (2071002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Wei Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WN., Chen, BQ. & Tan, TW. Esterification Synthesis of Ethyl Oleate in Solvent-Free System Catalyzed by Lipase Membrane from Fermentation Broth. Appl Biochem Biotechnol 163, 102–111 (2011). https://doi.org/10.1007/s12010-010-9020-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9020-2

Keywords

Navigation