Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 71–79 | Cite as

Efficient Enzymatic Production of the Bacterial Second Messenger c-di-GMP by the Diguanylate Cyclase YdeH from E. coli

  • Franziska Zähringer
  • Claudia Massa
  • Tilman SchirmerEmail author


Cyclic di-GMP (c-di-GMP) is an almost universal bacterial second messenger involved in the regulation of cell surface-associated traits and the persistence of infections. GGDEF and EAL domain-containing proteins catalyse c-di-GMP synthesis and degradation, respectively. We report the enzymatic large-scale synthesis of c-di-GMP, making use of the GGDEF domain-containing protein YdeH from Escherichia coli. Overexpression and purification of YdeH have been established, and the conditions for c-di-GMP synthesis were optimised. In contrast to the chemical synthesis of c-di-GMP, enzymatic c-di-GMP production is a one-step reaction that can easily be performed with the equipment of a standard biochemical lab. The protocol allows the production of milligram amounts of c-di-GMP within 1 day and paves the way for extensive biochemical and biophysical studies on c-di-GMP-mediated processes.


c-di-GMP Diguanylate cyclase GGDEF domain Enzymatic synthesis E. coli 



We thank Dr. Alexander Böhm, Biozentrum Basel, for the gift of the plasmid, Dr. Martin Allan, Biozentrum Basel, for help with 1H-NMR spectroscopy and Dietrich Samoray for suggesting to test the effect of osmolytes on YdeH solubility. The work was supported by Swiss National Science Foundation grant 3100A0-105587.


  1. 1.
    Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., et al. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 325, 279–381.CrossRefGoogle Scholar
  2. 2.
    Jenal, U., & Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annual Review of Genetics, 40, 385–407.CrossRefGoogle Scholar
  3. 3.
    Tamayo, R., Pratt, J. T., & Camilli, A. (2007). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual Review of Microbiology, 61, 131–148.CrossRefGoogle Scholar
  4. 4.
    Schirmer, T., & Jenal, U. (2009). Structural and mechanistic determinants of c-di-GMP signaling. Nature Reviews Microbiology, 7, 724–735.CrossRefGoogle Scholar
  5. 5.
    Pesavento, C., & Hengge, R. (2009). Bacterial nucleotide-based second messengers. Current Opinion in Microbiology, 12, 170–176.CrossRefGoogle Scholar
  6. 6.
    Tamayo, R., Schild, S., Pratt, J. T., & Camilli, A. (2008). Role of cyclic di-GMP during el tor biotype Vibrio cholerae infection: Characterization of the in vivo-induced cyclic di-GMP phosphodiesterase CdpA. Infection and Immunity, 76, 1617–1627.CrossRefGoogle Scholar
  7. 7.
    Tal, R., Wong, H. C., Calhoon, R., Gelfand, D., Fear, A. L., Volman, G., et al. (1998). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. Journal of Bacteriology, 80, 4416–4425.Google Scholar
  8. 8.
    Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U., et al. (2004). Structural basis of activity and allosteric control of diguanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 101, 17084–17089.CrossRefGoogle Scholar
  9. 9.
    Paul, R., Weiser, S., Amiot, N. C., Chan, C., Schirmer, T., Giese, B., et al. (2004). Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes & Development, 18, 715–727.CrossRefGoogle Scholar
  10. 10.
    Ryjenkov, D. A., Tarutina, M., Moskvin, O. V., & Gomelsky, M. (2005). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. Journal of Bacteriology, 187, 1792–1798.CrossRefGoogle Scholar
  11. 11.
    Schmidt, A. J., Ryjenkov, D. A., & Gomelsky, M. (2005). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. Journal of Bacteriology, 187, 4774–4781.CrossRefGoogle Scholar
  12. 12.
    Christen, M., Christen, B., Folcher, M., Schauerte, A., & Jenal, U. (2005). Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. The Journal of Biological Chemistry, 280, 30829–30837.CrossRefGoogle Scholar
  13. 13.
    Rao, F., Yang, Y., Qi, Y., & Liang, Z. X. (2008). Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: A study of the EAL domain-containing RocR from Pseudomonas aeruginosa. Journal of Bacteriology, 190, 3622–3631.CrossRefGoogle Scholar
  14. 14.
    Galperin, M. Y. (2006). Structural classification of bacterial response regulators: Diversity of output domains and domain combinations. Journal of Bacteriology, 188, 4169–4182.CrossRefGoogle Scholar
  15. 15.
    Amikam, D., & Galperin, M. Y. (2006). PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics, 22, 3–6.CrossRefGoogle Scholar
  16. 16.
    Duerig, A., Abel, S., Folcher, M., Nicollier, M., Schwede, T., Amiot, N., et al. (2009). Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes & Development, 23, 93–104.CrossRefGoogle Scholar
  17. 17.
    Tschowri, N., Busse, S., & Hengge, R. (2009). The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes & Development, 15, 522–534.CrossRefGoogle Scholar
  18. 18.
    Sudarsan, N., Lee, E. R., Weinberg, Z., Moy, R. H., Kim, J. N., Link, K. H., et al. (2008). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science, 321, 411–413.CrossRefGoogle Scholar
  19. 19.
    Smith, K. D., Lipchock, S. V., Ames, T. D., Wang, J., Breaker, R. R., & Strobel, S. A. (2009). Structural basis of ligand binding by a c-di-GMP riboswitch. Nature Structural & Molecular Biology, 16, 1218–1223.CrossRefGoogle Scholar
  20. 20.
    Kulshina, N., Baird, N. J., & Ferré-D'Amaré, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nature Structural & Molecular Biology, 16, 1212–1217.CrossRefGoogle Scholar
  21. 21.
    Karaolis, D. K., Rashid, M. H., Chythanya, R., Luo, W., Hyodo, M., & Hayakawa, Y. (2005). C-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell–cell interactions and biofilm formation. Antimicrobial Agents and Chemotherapy, 49, 1029–1038.CrossRefGoogle Scholar
  22. 22.
    Brouillette, E., Hyodo, M., Hayakawa, Y., Karaolis, D. K., & Malouin, F. (2005). 3′-5′-Cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrobial Agents and Chemotherapy, 49, 3109–3113.CrossRefGoogle Scholar
  23. 23.
    Karaolis, D. K., Means, T. K., Yang, D., Takahashi, M., Yoshimura, T., Muraille, E., et al. (2007). Bacterial c-di-GMP is an immunostimulatory molecule. Journal of Immunology, 178, 2171–2181.Google Scholar
  24. 24.
    Karaolis, D. K., Newstead, M. W., Zeng, X., Hyodo, M., Hayakawa, Y., Bhan, U., et al. (2007). Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infection and Immunity, 75, 4942–5450.CrossRefGoogle Scholar
  25. 25.
    Ogunniyi, A. D., Paton, J. C., Kirby, A. C., McCullers, J. A., Cook, J., Hyodo, M., et al. (2008). C-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine, 26, 4676–4685.CrossRefGoogle Scholar
  26. 26.
    Karaolis, D. K., Cheng, K., Lipsky, M., Elnabawi, A., Catalano, J., Hyodo, M., et al. (2005). 3′,5′-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochemical and Biophysical Research Communications, 329, 40–45.CrossRefGoogle Scholar
  27. 27.
    Ross, P., Mayer, R., Weinhouse, H., Amikam, D., Huggirat, Y., Benziman, M., et al. (1990). The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. The Journal of Biological Chemistry, 265, 18933–18943.Google Scholar
  28. 28.
    Kawai, R., Nagata, R., Hirata, A., & Hayakawa, Y. (2003). A new synthetic approach to cyclic bis(3′→5′)diguanylic acid. Nucleic Acids Symposium Series, 3, 103–104.Google Scholar
  29. 29.
    Hayakawa, Y., Nagata, R., Hirata, A., Hyodo, M., & Kawai, R. (2003). A facile synthesis of cyclic bis(3′→5′)diguanylic acid. Tetrahedron, 59, 6465–6471.CrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Gaffney, B. L., & Jones, R. A. (2004). C-di-GMP displays a monovalent metal ion-dependent polymorphism. Journal of the American Chemical Society, 26, 16700–16701.CrossRefGoogle Scholar
  31. 31.
    Amiot, N., Heintz, K., & Giese, B. (2006). New approach for the synthesis of c-di-GMP and its analogues. Synthesis, 24, 4230–4236.Google Scholar
  32. 32.
    Yan, H., & Aguilar, A. L. (2007). Synthesis of 3′,5′-cyclic diguanylic acid (cdiGMP) using 1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl as a protecting group for 2′-hydroxy functions of ribonucleosides. Nucleosides, Nucleotides & Nucleic Acids, 26, 189–204.CrossRefGoogle Scholar
  33. 33.
    Kiburu, I., Shurer, A., Yan, L., & Sintim, H. O. (2008). A simple solid-phase synthesis of the ubiquitous bacterial signaling molecule, c-di-GMP and analogues. Molecular Biosystems, 4, 518–520.CrossRefGoogle Scholar
  34. 34.
    Tamayo, R., Tischler, A. D., & Camilli, A. (2005). The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. The Journal of Biological Chemistry, 280, 33324–33330.CrossRefGoogle Scholar
  35. 35.
    Kazmierczak, B. I., Lebron, M. B., & Murray, T. S. (2006). Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Molecular Microbiology, 60, 1026–1043.CrossRefGoogle Scholar
  36. 36.
    Merighi, M., Lee, V. T., Hyodo, M., Hayakawa, Y., & Lory, S. (2007). The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Molecular Microbiology, 65, 876–895.CrossRefGoogle Scholar
  37. 37.
    Hickman, J. W., & Harwood, C. S. (2008). Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Molecular Microbiology, 69, 376–389.CrossRefGoogle Scholar
  38. 38.
    Rao, F., Pasunooti, S., Ng, Y., Zhuo, W., Lim, L., Liu, A. W., et al. (2009). Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase. Analytical Biochemistry, 389, 138–142.CrossRefGoogle Scholar
  39. 39.
    Böhm, A., Steiner, S., Zähringer, F., Casanova, A., Hamburger, F., Ritz, D., et al. (2009). Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Molecular Microbiology, 72, 1500–1516.CrossRefGoogle Scholar
  40. 40.
    Golovanov, A. P., Hautbergue, G. M., Wilson, S. A., & Lian, L. Y. (2004). A simple method for improving protein solubility and long-term stability. Journal of the American Chemical Society, 126, 8933–8939.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Franziska Zähringer
    • 1
  • Claudia Massa
    • 1
  • Tilman Schirmer
    • 1
    Email author
  1. 1.Core Program Structural Biology and Biophysics, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations