Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 52–63 | Cite as

Cloning and Characterization of a Sucrose Isomerase from Erwinia rhapontici NX-5 for Isomaltulose Hyperproduction

  • Sha Li
  • Heng Cai
  • Yujia Qing
  • Ben Ren
  • Hong XuEmail author
  • Hongyang Zhu
  • Jun Yao


The sucrose isomerase (SIase) gene from an efficient strain of Erwinia rhapontici NX-5 for isomaltulose hyperproduction was cloned and overexpressed in Escherichia coli. Protein sequence alignment revealed that SIase was a member of the glycoside hydrolase 13 family. The molecular mass of the purified recombinant protein was estimated at 66 kDa by SDS-PAGE. The SIase had an optimal pH and temperature of 5.0 and 30 °C, respectively, with a K m of 257 mmol/l and V max of 48.09 μmol/l/s for sucrose. To the best of our knowledge, the recombinant SIase has the most acidic optimum pH for isomaltulose synthesis. When the recombinant E. coli (pET22b- palI) cells were used for isomaltulose synthesis, almost complete conversion of sucrose (550 g/l solution) to isomaltulose was achieved in 1.5 h with high isomaltulose yields (87%). The immobilized E. coli cells remained stable for more than 30 days in a “batch”-type enzyme reactor. This indicated that the recombinant SIase could continuously and efficiently produce isomaltulose.


Erwinia rhapontici Isomaltulose Sucrose isomerase Sucrose Trehalulose 



This work was supported by Key Projects in the National Science and Technology Pillar Program during the Eleventh 5-Year Plan Period (2008BAI63B07), National Natural Science Foundation of China (20906050), Natural Science Foundation of Jiangsu Province (BK2009357), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (08KJA180001), The University Nature Science Research of Jiangsu Province (09KJB530007).


  1. 1.
    Oshima, T., Izumitani, A., Sobue, S., et al. (1983). Infection and Immunity, 39, 43–49.Google Scholar
  2. 2.
    Schiweck, H., Munir, M., Rapp, K. M., et al. (1991). Schneider. In Carbohydrates as Organic Raw Materials (Ed.), Lichtenthaler, F.W (pp. 57–94). Weinheim: Wiley-VCH.Google Scholar
  3. 3.
    Lina, B. A., Jonker, D., Kozianowski, G., et al. (2002). Food and Chemical Toxicology, 40, 1375–1381.CrossRefGoogle Scholar
  4. 4.
    Nagai, Y., Sugitani, T., & Tsuyuki, K. (1994). Bioscience, Biotechnology, and Biochemistry, 58, 1789–1793.CrossRefGoogle Scholar
  5. 5.
    Bornke, F., Hammad, M., & Sonnewald, U. (2001). Journal of Bacteriology, 183, 2425–2430.CrossRefGoogle Scholar
  6. 6.
    Zhang, D., Li, X., & Zhang, L. H. (2002). Applied and Environmental Microbiology, 68, 2676–2682.CrossRefGoogle Scholar
  7. 7.
    Wu, L., & Birch, R. G. (2005). Journal of Applied Microbiology, 97, 93–103.CrossRefGoogle Scholar
  8. 8.
    Ravaud, S., Watzlawick, H., Haser, R., et al. (2006). Acta crystallographica section F structural biology and crystallization communications, 62, 74–76.CrossRefGoogle Scholar
  9. 9.
    Cha, J., Jung, J. H., Park, S. E. et al. (2009). Journal of Applied Microbiology. dio: 10.1111/j.1365-2672.2009.04295.x
  10. 10.
    Cheetham, P. S. J. (1984). The Biochemical Journal, 220, 213–220.Google Scholar
  11. 11.
    Salvucci, M. E. (2003). Comparative Biochem Physiol B, 135, 385–395.CrossRefGoogle Scholar
  12. 12.
    Wu, L., & Birch, R. G. (2005). Applied and Environmental Microbiology, 71, 1581–1590.CrossRefGoogle Scholar
  13. 13.
    Veronese, T., & Perlot, P. (1999). Enzyme and Microbial Technology, 24, 263–269.CrossRefGoogle Scholar
  14. 14.
    Zhang, D., Li, N., Lok, S. M., et al. (2003). The Journal of Biological Chemistry, 278, 35428–35434.CrossRefGoogle Scholar
  15. 15.
    Ravaud, S., Robert, X., Watzlawick, H., et al. (2007). The Journal of Biological Chemistry, 282, 28126–28136.CrossRefGoogle Scholar
  16. 16.
    Ravaud, S., Robert, X., Watzlawick, H., et al. (2009). FEBS Letters, 583, 1964–1968.CrossRefGoogle Scholar
  17. 17.
    Krastanov, A., & Yoshida, T. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 593–598.CrossRefGoogle Scholar
  18. 18.
    Krastanov, A., Blazheva, D., & Stanchev, V. (2007). Process Biochemistry, 42, 1655–1659.Google Scholar
  19. 19.
    Kawaguti, H. Y., & Sato, H. H. (2007). Biochemical Engineering Journal, 36, 202–208.CrossRefGoogle Scholar
  20. 20.
    Kawaguti, H. Y., Buzzato, M. F., & Sato, H. H. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 261–269.CrossRefGoogle Scholar
  21. 21.
    Xu, H., Li, S., Huang, M. X. et al. (2007). CN patent 200710190755.2.Google Scholar
  22. 22.
    Kawaguti, H. Y., Buzzato, M. F., Orsi, D. C., et al. (2006). Process Biochemistry, 41, 2035–2040.CrossRefGoogle Scholar
  23. 23.
    Montalk, G. P., Magali, R. S., Willemot, R. M., et al. (2000). FEBS Letters, 471, 219–223.CrossRefGoogle Scholar
  24. 24.
    Watanabe, K., Miyake, K., & Suzuki, Y. (2001). Bioscience, Biotechnology, and Biochemistry, 65, 2058–2064.CrossRefGoogle Scholar
  25. 25.
    Dworschak, E. (1980). Critical Reviews in Food Science and Nutrition, 13, 1–40.CrossRefGoogle Scholar
  26. 26.
    Mcallister, M., Kelly, C. T., Doyle, E., et al. (1990). Biotechnological Letters, 12, 667–672.CrossRefGoogle Scholar
  27. 27.
    Tsuyuki, K., Sugitani, Y., Miyata, Y., et al. (1992). The Journal of General and Applied Microbiology, 38, 483–490.CrossRefGoogle Scholar
  28. 28.
    Li, X., Zhao, C., An, Q., et al. (2003). Journal of Applied Microbiology, 95, 521–527.CrossRefGoogle Scholar
  29. 29.
    Gouet, P., Robert, X., & Courcelle, E. (2003). Nucleic Acids Research, 31, 3320–3323.CrossRefGoogle Scholar
  30. 30.
    Cho, M. H., Park, S. E., Lim, J. K., et al. (2007). Biotechnological Letters, 29, 453–458.CrossRefGoogle Scholar
  31. 31.
    Nagai, Y., Tsuyuki, K., Sugitani, T., et al. (1993). Bioscience, Biotechnology, and Biochemistry, 57, 2049–2053.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sha Li
    • 1
  • Heng Cai
    • 1
  • Yujia Qing
    • 1
  • Ben Ren
    • 1
  • Hong Xu
    • 1
    Email author
  • Hongyang Zhu
    • 1
  • Jun Yao
    • 1
    • 2
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light IndustryNanjing University of TechnologyNanjingPeople’s Republic of China
  2. 2.Department of Biotechnology, School of Basic Medical ScienceNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations