Advertisement

Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 25–39 | Cite as

Production and Characterization of Cellobiohydrolase from a Novel Strain of Penicillium purpurogenum KJS506

  • Kyoung-Mi Lee
  • Ah-Reum Joo
  • Marimuthu Jeya
  • Kyoung-Min Lee
  • Hee-Jung Moon
  • Jung-Kul LeeEmail author
Article

Abstract

A high cellobiohydrolase (CBH)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 according to the morphology and comparison of internal transcribed spacer rDNA gene sequence. When rice straw and corn steep powder were used as carbon and nitrogen sources, respectively, a maximum CBH activity of 2.6 U mg-protein−1, one of the highest among CBH-producing microorganisms, was obtained. The optimum temperature and pH for CBH production were 30 °C and 4.0, respectively. The increased production of CBH in P. purpurogenum culture at 30 °C was confirmed by two-dimensional electrophoresis followed by MS/MS sequencing of the partial peptide. The internal amino acid sequences of P. purpurogenum CBH showed a significant homology with hydrolases from glycoside hydrolase family 7. The extracellular CBH was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a Mono Q column with fast-protein liquid chromatography. The purified CBH was a monomeric protein with a molecular weight of 60 kDa and showed broad substrate specificity with maximum activity towards p-nitrophenyl β-d-cellobiopyranoside. P. purpurogenum CBH showed t 1/2 value of 4 h at 60 °C and V max value of 11.9 μmol min−1 mg-protein−1 for p-nitrophenyl-d-cellobiopyranoside. Although CBHs have been reported, the high specific activity distinguishes P. purpurogenum CBH.

Keywords

Cellobiohydrolase Enzyme production Glycoside hydrolase Penicillium purpurogenum Purification 

Notes

Acknowledgments

This study was supported by a grant (code 2008A0080126) from ARPC. It was also supported by a grant (Code 20070301034024) from BioGreen 21 Program, Rural Development Administration, Republic of Korea.

References

  1. 1.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
  2. 2.
    Baldrian, P., & Valaskova, V. (2008). Degradation of cellulose by Basidiomycetous fungi. FEMS-Microbiology Reviews, 32, 501–521.CrossRefGoogle Scholar
  3. 3.
    Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583–620.CrossRefGoogle Scholar
  4. 4.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  5. 5.
    Eriksson, K., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Berlin: Springer.Google Scholar
  6. 6.
    Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280, 309–316.Google Scholar
  7. 7.
    Hong, J., Tamaki, H., Yamamoto, K., & Kumagai, H. (2003). Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Applied Microbiology and Biotechnology, 63, 42–50.CrossRefGoogle Scholar
  8. 8.
    Hou, Y., Wang, T., Long, H., & Zhu, H. (2007). Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin (Shanghai), 39, 101–107.CrossRefGoogle Scholar
  9. 9.
    Igarashi, K., Samejima, M., & Eriksson, K. E. (1998). Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. European Journal of Biochemistry, 253, 101–106.CrossRefGoogle Scholar
  10. 10.
    Kanokratana, P., Chantasingh, D., Champreda, V., Tanapongpipat, S., Pootanakit, K., & Eurwilaichitr, L. (2008). Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. Protein Expression and Purification, 58, 148–153.CrossRefGoogle Scholar
  11. 11.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  12. 12.
    Lahjouji, K., Storms, R., Xiao, Z., Joung, K. B., Zheng, Y., Powlowski, J., et al. (2007). Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Applied Microbiology and Biotechnology, 75, 337–346.CrossRefGoogle Scholar
  13. 13.
    Li, Y. L., Li, D. C., & Teng, F. C. (2006). Purification and characterization of a cellobiohydrolase from the thermophilic fungus Chaetomium thermophilus CT2. Wei Sheng Wu Xue Bao, 46, 143–6.Google Scholar
  14. 14.
    Limam, F., Chaabouni, S., Ghrir, R., & Marzouki, N. (1995). Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: Purification and properties. Enz Microbial Technol, 17, 340–346.CrossRefGoogle Scholar
  15. 15.
    Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). How biotech can transform biofuels. Nature Biotechnology, 26, 169–172.CrossRefGoogle Scholar
  16. 16.
    Mathew, G. M., Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2008). Progress in research on fungal cellulases for lignocellulose degradation. Journal of Scientific and Industrial Research, 67, 898–907.Google Scholar
  17. 17.
    Medve, J., Lee, D., & Tjerneld, F. (1998). Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquid chromatography. J Chromatography A, 808, 153–165.CrossRefGoogle Scholar
  18. 18.
    Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analy Chem, 31, 426–428.CrossRefGoogle Scholar
  19. 19.
    O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250, 4007–4021.Google Scholar
  20. 20.
    Ohnishi, Y., Nagase, M., Ichiyanagi, T., Kitamoto, Y., & Aimi, T. (2007). Transcriptional regulation of two cellobiohydrolase encoding genes (cel1 and cel2) from the wood-degrading Basidiomycete Polyporus arcularius. Applied Microbiology and Biotechnology, 76, 1069–1078.CrossRefGoogle Scholar
  21. 21.
    Parkkinen, T., Koivula, A., Vehmaanpera, J., & Rouvinen, J. (2008). Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Science, 17, 1383–1394.CrossRefGoogle Scholar
  22. 22.
    Rouau, X., & Odier, E. (1986). Purification and properties of two enzymes from Dichomitus squalens which exhibit both cellobiohydrolase and xylanase activity. Carbohydrate Research, 145, 279–292.CrossRefGoogle Scholar
  23. 23.
    Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 68, 850–858.CrossRefGoogle Scholar
  24. 24.
    Shoemaker, S., Schweickart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., et al. (1983). Molecular cloning of exo–cellobiohydrolase I derived from Trichoderma reesei strain l27. Bio/Technology, 1, 691–696.CrossRefGoogle Scholar
  25. 25.
    Stahl, P., & Klug, M. (1996). Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology, 62, 4136–4146.Google Scholar
  26. 26.
    Stahlberg, J., Divne, C., Koivula, A., Piens, K., Claeyssens, M., Teeri, T. T., et al. (1996). Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. Journal of Molecular Biology, 264, 337–349.CrossRefGoogle Scholar
  27. 27.
    Sun, X., Liu, Z., Qu, Y., & Li, X. (2008). The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Applied Biochemistry and Biotechnology, 146, 119–128.CrossRefGoogle Scholar
  28. 28.
    Takao, S., Kamagata, Y., & Sasaki, H. (1985). Cellulase production by Penicillium purpurogenum. Journal of Fermentation Technology, 63, 127–134.Google Scholar
  29. 29.
    Teeri, T. T., Koivula, A., Linder, M., Wohlfahrt, G., Divne, C., & Jones, T. A. (1998). Trichoderma reesei cellobiohydrolase: Why so efficient on crystalline cellulose? Biochemical Society Transactions, 26, 173–178.Google Scholar
  30. 30.
    Teeri, T. T., Lehtovaara, P., Kauppinen, S., Salovuori, I., & Knowles, J. (1987). Homologous domains in Trichoderma reesei cellulolytic enzymes: Gene sequence and expression of cellobiohydrolase II. Gene, 51, 43–52.CrossRefGoogle Scholar
  31. 31.
    Tomme, P., Kwan, E., Gilkes, N. R., Kilburn, D. G., & Warren, R. A. (1996). Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. Journal of Bacteriology, 178, 4216–4223.Google Scholar
  32. 32.
    Tomme, P., Van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vandekerckhove, J., Knowles, J., et al. (1988). Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. European Journal of Biochemistry, 170, 575–581.CrossRefGoogle Scholar
  33. 33.
    Tuohy, M. G., Walsh, D. J., Murray, P. G., Claeyssens, M., Cuffe, M. M., Savage, A. V., et al. (2002). Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochimica Et Biophysica Acta, 1596, 366–380.CrossRefGoogle Scholar
  34. 34.
    Uzcategui, E., Ruiz, A., Montesino, R., Johansson, G., & Pettersson, G. (1991). The 1, 4-beta-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. Journal of Biotechnology, 19, 271–285.CrossRefGoogle Scholar
  35. 35.
    Wang, T., Wang, C., Gao, P., Zhong, L., & Zou, Y. (1998). Subcloning and expression of coding region for cellulase binding domain of CBH I from P. janthinellum in E. coli. Wei Sheng Wu Xue Bao, 38, 269–75.Google Scholar
  36. 36.
    White, T., Bruns, T., & Lee, S. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis & T. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic.Google Scholar
  37. 37.
    Zhang, Y. H. P. (2009). A sweet out-of-the-box solution to the hydrogen economy: Is the sugar-powered car science fiction? Energy Environ Sci, 2, 272–282.CrossRefGoogle Scholar
  38. 38.
    Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24, 452–481.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kyoung-Mi Lee
    • 1
  • Ah-Reum Joo
    • 2
  • Marimuthu Jeya
    • 1
  • Kyoung-Min Lee
    • 1
  • Hee-Jung Moon
    • 2
  • Jung-Kul Lee
    • 1
    • 3
    Email author
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulSouth Korea
  2. 2.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulSouth Korea
  3. 3.Institute of SK-KU BiomaterialsKonkuk UniversitySeoulSouth Korea

Personalised recommendations