Skip to main content
Log in

Production and Characterization of Cellobiohydrolase from a Novel Strain of Penicillium purpurogenum KJS506

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A high cellobiohydrolase (CBH)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 according to the morphology and comparison of internal transcribed spacer rDNA gene sequence. When rice straw and corn steep powder were used as carbon and nitrogen sources, respectively, a maximum CBH activity of 2.6 U mg-protein−1, one of the highest among CBH-producing microorganisms, was obtained. The optimum temperature and pH for CBH production were 30 °C and 4.0, respectively. The increased production of CBH in P. purpurogenum culture at 30 °C was confirmed by two-dimensional electrophoresis followed by MS/MS sequencing of the partial peptide. The internal amino acid sequences of P. purpurogenum CBH showed a significant homology with hydrolases from glycoside hydrolase family 7. The extracellular CBH was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a Mono Q column with fast-protein liquid chromatography. The purified CBH was a monomeric protein with a molecular weight of 60 kDa and showed broad substrate specificity with maximum activity towards p-nitrophenyl β-d-cellobiopyranoside. P. purpurogenum CBH showed t 1/2 value of 4 h at 60 °C and V max value of 11.9 μmol min−1 mg-protein−1 for p-nitrophenyl-d-cellobiopyranoside. Although CBHs have been reported, the high specific activity distinguishes P. purpurogenum CBH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  2. Baldrian, P., & Valaskova, V. (2008). Degradation of cellulose by Basidiomycetous fungi. FEMS-Microbiology Reviews, 32, 501–521.

    Article  CAS  Google Scholar 

  3. Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  5. Eriksson, K., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Berlin: Springer.

    Google Scholar 

  6. Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  7. Hong, J., Tamaki, H., Yamamoto, K., & Kumagai, H. (2003). Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Applied Microbiology and Biotechnology, 63, 42–50.

    Article  CAS  Google Scholar 

  8. Hou, Y., Wang, T., Long, H., & Zhu, H. (2007). Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin (Shanghai), 39, 101–107.

    Article  CAS  Google Scholar 

  9. Igarashi, K., Samejima, M., & Eriksson, K. E. (1998). Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. European Journal of Biochemistry, 253, 101–106.

    Article  CAS  Google Scholar 

  10. Kanokratana, P., Chantasingh, D., Champreda, V., Tanapongpipat, S., Pootanakit, K., & Eurwilaichitr, L. (2008). Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. Protein Expression and Purification, 58, 148–153.

    Article  CAS  Google Scholar 

  11. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  12. Lahjouji, K., Storms, R., Xiao, Z., Joung, K. B., Zheng, Y., Powlowski, J., et al. (2007). Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Applied Microbiology and Biotechnology, 75, 337–346.

    Article  CAS  Google Scholar 

  13. Li, Y. L., Li, D. C., & Teng, F. C. (2006). Purification and characterization of a cellobiohydrolase from the thermophilic fungus Chaetomium thermophilus CT2. Wei Sheng Wu Xue Bao, 46, 143–6.

    CAS  Google Scholar 

  14. Limam, F., Chaabouni, S., Ghrir, R., & Marzouki, N. (1995). Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: Purification and properties. Enz Microbial Technol, 17, 340–346.

    Article  CAS  Google Scholar 

  15. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). How biotech can transform biofuels. Nature Biotechnology, 26, 169–172.

    Article  CAS  Google Scholar 

  16. Mathew, G. M., Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2008). Progress in research on fungal cellulases for lignocellulose degradation. Journal of Scientific and Industrial Research, 67, 898–907.

    CAS  Google Scholar 

  17. Medve, J., Lee, D., & Tjerneld, F. (1998). Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquid chromatography. J Chromatography A, 808, 153–165.

    Article  CAS  Google Scholar 

  18. Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analy Chem, 31, 426–428.

    Article  CAS  Google Scholar 

  19. O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250, 4007–4021.

    Google Scholar 

  20. Ohnishi, Y., Nagase, M., Ichiyanagi, T., Kitamoto, Y., & Aimi, T. (2007). Transcriptional regulation of two cellobiohydrolase encoding genes (cel1 and cel2) from the wood-degrading Basidiomycete Polyporus arcularius. Applied Microbiology and Biotechnology, 76, 1069–1078.

    Article  CAS  Google Scholar 

  21. Parkkinen, T., Koivula, A., Vehmaanpera, J., & Rouvinen, J. (2008). Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Science, 17, 1383–1394.

    Article  CAS  Google Scholar 

  22. Rouau, X., & Odier, E. (1986). Purification and properties of two enzymes from Dichomitus squalens which exhibit both cellobiohydrolase and xylanase activity. Carbohydrate Research, 145, 279–292.

    Article  CAS  Google Scholar 

  23. Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 68, 850–858.

    Article  CAS  Google Scholar 

  24. Shoemaker, S., Schweickart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., et al. (1983). Molecular cloning of exo–cellobiohydrolase I derived from Trichoderma reesei strain l27. Bio/Technology, 1, 691–696.

    Article  CAS  Google Scholar 

  25. Stahl, P., & Klug, M. (1996). Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology, 62, 4136–4146.

    CAS  Google Scholar 

  26. Stahlberg, J., Divne, C., Koivula, A., Piens, K., Claeyssens, M., Teeri, T. T., et al. (1996). Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. Journal of Molecular Biology, 264, 337–349.

    Article  CAS  Google Scholar 

  27. Sun, X., Liu, Z., Qu, Y., & Li, X. (2008). The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Applied Biochemistry and Biotechnology, 146, 119–128.

    Article  CAS  Google Scholar 

  28. Takao, S., Kamagata, Y., & Sasaki, H. (1985). Cellulase production by Penicillium purpurogenum. Journal of Fermentation Technology, 63, 127–134.

    CAS  Google Scholar 

  29. Teeri, T. T., Koivula, A., Linder, M., Wohlfahrt, G., Divne, C., & Jones, T. A. (1998). Trichoderma reesei cellobiohydrolase: Why so efficient on crystalline cellulose? Biochemical Society Transactions, 26, 173–178.

    CAS  Google Scholar 

  30. Teeri, T. T., Lehtovaara, P., Kauppinen, S., Salovuori, I., & Knowles, J. (1987). Homologous domains in Trichoderma reesei cellulolytic enzymes: Gene sequence and expression of cellobiohydrolase II. Gene, 51, 43–52.

    Article  CAS  Google Scholar 

  31. Tomme, P., Kwan, E., Gilkes, N. R., Kilburn, D. G., & Warren, R. A. (1996). Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. Journal of Bacteriology, 178, 4216–4223.

    CAS  Google Scholar 

  32. Tomme, P., Van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vandekerckhove, J., Knowles, J., et al. (1988). Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. European Journal of Biochemistry, 170, 575–581.

    Article  CAS  Google Scholar 

  33. Tuohy, M. G., Walsh, D. J., Murray, P. G., Claeyssens, M., Cuffe, M. M., Savage, A. V., et al. (2002). Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochimica Et Biophysica Acta, 1596, 366–380.

    Article  CAS  Google Scholar 

  34. Uzcategui, E., Ruiz, A., Montesino, R., Johansson, G., & Pettersson, G. (1991). The 1, 4-beta-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. Journal of Biotechnology, 19, 271–285.

    Article  CAS  Google Scholar 

  35. Wang, T., Wang, C., Gao, P., Zhong, L., & Zou, Y. (1998). Subcloning and expression of coding region for cellulase binding domain of CBH I from P. janthinellum in E. coli. Wei Sheng Wu Xue Bao, 38, 269–75.

    CAS  Google Scholar 

  36. White, T., Bruns, T., & Lee, S. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis & T. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic.

    Google Scholar 

  37. Zhang, Y. H. P. (2009). A sweet out-of-the-box solution to the hydrogen economy: Is the sugar-powered car science fiction? Energy Environ Sci, 2, 272–282.

    Article  CAS  Google Scholar 

  38. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (code 2008A0080126) from ARPC. It was also supported by a grant (Code 20070301034024) from BioGreen 21 Program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Kul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KM., Joo, AR., Jeya, M. et al. Production and Characterization of Cellobiohydrolase from a Novel Strain of Penicillium purpurogenum KJS506. Appl Biochem Biotechnol 163, 25–39 (2011). https://doi.org/10.1007/s12010-010-9013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9013-1

Keywords

Navigation