Skip to main content
Log in

Effect of Biochemical Stimulants on Biomass Productivity and Metabolite Content of the Microalga, Chlorella sorokiniana

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of 12 biochemical stimulants, namely 2-phenylacetic acid (PAA; 30 ppm), indole-3 butyric acid (IBA; 10 ppm), 1-naphthaleneacetic acid (NAA; 2.5, 5 and 10 ppm ), gibberellic acid (GA3, 10 ppm), zeatin (ZT; 0.002 ppm), thidiazuron (0.22 ppm), humic acid (20 ppm), kelp extract (250 ppm), methanol (500 ppm), ferric chloride (3.2 ppm ), putrescine (0.09 ppm), spermidine (1.5 ppm) were prescreened for their impact on growth and chlorophyll for the green alga—Chlorella sorokiniana. C. sorokiniana responded best to phytohormones in the auxin family, particularly NAA. Thereafter, two studies were conducted on combinations of phytohormones to compare blends from within the auxin family as well as against other families. These treatments were NAA5 ppm+PAA30 ppm, NAA2.5 ppm+PAA15 ppm, NAA5 ppm+IBA10 ppm, NAA5 ppm+GA310 ppm, NAA5 ppm+ZT1 ppm, and NAA5 ppm+GA310 ppm+ZT1 ppm. Combinations of NAA with other auxins did not have synergistic or antagonistic effects on the growth. However, combinations of compounds from different phytohormone families, such as NAA5 ppm+GA310 ppm+ZT1 ppm, dramatically increased the biomass productivity by 170% over the control followed by the treatments: NAA 5 ppm+GA310 ppm (138%), NAA 5 ppm+ZT1 ppm (136%), and NAA 5 ppm ( 133%). The effect of biochemical stimulants were also measured on metabolites such as chlorophyll, protein, and lipids in C. sorokiniana. Renewed interest in microalgae for biotechnology and biofuel applications may warrant the use of biochemical stimulants for cost reduction in large-scale cultivation through increased biomass productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008). The Plant Journal, 54, 621–639.

    Article  CAS  Google Scholar 

  2. Hunt, R. W., Zavalin, A., Bhatnagar, A., Chinnasamy, S., & Das, K. C. (2009). International Journal of Molecular Sciences, 10, 4515–4558.

    Article  CAS  Google Scholar 

  3. Brannon, M., & Bartsch, A. (1939). Journal de Botanique, 26, 179–269.

    Google Scholar 

  4. Brian, P. W., Elson, G. W., Hemming, H. G., & Radley, M. (1954). Journal of the Science of Food and Agriculture, 5, 602–612.

    Article  CAS  Google Scholar 

  5. Lee, Y. S., & Bartlett, R. J. (1976). Vermont Agricultural Experiment Station J, 353, 876–879.

    Google Scholar 

  6. Li, T., Wang, C., & Miao, J. (2007). Journal of Applied Phycology, 1, 479–484.

    Article  Google Scholar 

  7. Liu, Z.-Y., Wang, G.-C., & Zhou, B.-C. (2008). Bioresource Technology, 99, 4717–4722.

    Article  CAS  Google Scholar 

  8. Piotrowska, A., Czerpak, R., Pietryczuk, A., Olesiewicz, A., & Wedolowska, M. (2008). Plant Growth Regulation, 55, 125–136.

    Article  CAS  Google Scholar 

  9. Czerpak, R., Bajguz, A., Białecka, B., Wierzchołowska, L., & Wolanska, M. M. (1994). Acta Societatis Botanicorum Poloniae, 63, 279–286.

    CAS  Google Scholar 

  10. Czerpak, R., & Bajguz, A. (1997). Acta Societatis Botanicorum Poloniae, 66, 41–46.

    CAS  Google Scholar 

  11. Czerpak, R., Krotke, A., & Mical, A. (1999). Polskie Archiwum Hydrobiologii, 46, 71–82.

    CAS  Google Scholar 

  12. Czerpak, R., Bajguz, A., Piotrowska, A., Dobrogowska, R., Matejczyk, W., & Wieslawski, W. (2003). Acta Societatis Botanicorum Poloniae, 72, 19–24.

    CAS  Google Scholar 

  13. Kotze, W., & Joubert, M. (1980). Elsenburg Joernaal, 4, 17–20.

    Google Scholar 

  14. Crouch, I. J., & van Staden, J. (1994). Journal of Home & Consumer Horticulture, 1(1), 21–29.

    Google Scholar 

  15. Vance, B. D. (1987). Journal of Plant Growth Regulation, 5, 169–173.

    Article  CAS  Google Scholar 

  16. Hourmant, A., Mereau, N., Penot, M., Cann, C., & Caroff, J. (1994). Acta Botanica Neerlandica, 43(2), 129–136.

    CAS  Google Scholar 

  17. Benemann, J. R., & Oswald, W. J. (1996). Systems and Economic Analysis of microalgae ponds for conversion of carbon dioxide to biomass. Final Report. Pittsburgh: Pittsburgh Energy Technology Center, DoE.

    Google Scholar 

  18. Stanier, R. V., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Bacteriological Reviews, 35, 171–205.

    CAS  Google Scholar 

  19. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2009). Bioresource Technology, 101, 3097–3105.

    Article  Google Scholar 

  20. Grossmann, K. (2000). Trends in Plant Science, 5, 506–508.

    Article  CAS  Google Scholar 

  21. Sunohara, Y., & Matsumoto, H. (1997). Pesticide Biochemistry and Physiology, 58, 125–132.

    Article  CAS  Google Scholar 

  22. Bradley, P. M., & Cheney, D. P. (1990). Hydrobiologia, 204–205(1), 353–360.

    Article  Google Scholar 

  23. Logothetis, K., Dakanali, S., Ioannidis, N., & Kotzabasis, K. (2004). Journal of Plant Physiology, 161, 715–724.

    Article  CAS  Google Scholar 

  24. Ahmad, M., & Winter, A. (1970). Hydrobiologia, 36(2), 305–316.

    Article  CAS  Google Scholar 

  25. Scholten, H. J. (1998). Scientia Horticulturae, 77, 83–88.

    Article  CAS  Google Scholar 

  26. Marth, P., Audia, W., & Mitchell, J. (1956). Botanical Gazette, 118(2), 106–111.

    Article  CAS  Google Scholar 

  27. Paleg, L. G. (1960). Plant Physiology, 35, 293–299.

    Article  CAS  Google Scholar 

  28. Huff, A., & Ross, C. (1975). Plant Physiology, 56, 429–433.

    Article  CAS  Google Scholar 

  29. Piotrowska, A., & Czerpak, R. (2009). Acta Physiologiae Plantarum, 31(3), 573–585.

    Article  CAS  Google Scholar 

  30. Thomas, J. C., & Katterman, F. R. (1986). Plant Physiology, 81, 681–683.

    Article  CAS  Google Scholar 

  31. Toledo, A. P. P., Tundisi, J. G., & D’Aquino, V. A. (1979). Hydrobiologia, 71, 261–263.

    Article  Google Scholar 

  32. Boothe, E. (1973). Seaweed in Agriculture and Horticulture (pp. 216–226). Stephenson: EP.

    Google Scholar 

  33. Boothe, E. (1974). Proceedings of the International Seaweed Symposium, 8, 661–666.

    Google Scholar 

  34. Theodoridou, A., Dörnemann, D., & Kotzabasis, K. (2002). Biochimica et Biophysica Acta, 1573, 189–198.

    CAS  Google Scholar 

  35. Navakoudis, E., Ioannidis, N. E., Dörnemann, D., & Kotzabasis, K. (2007). Biochimica et Biophysica Acta, 1767, 948–955.

    Article  CAS  Google Scholar 

  36. Kotzabasis, K., Hatziathanasiou, A., Bengoa-Ruigomez, M. V., Kentouri, M., & Divanach, P. (1999). Journal of Biotechnology, 70, 357–362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the US Department of Energy and State of Georgia that funded this project as part of the Biorefining and Carbon Cycling research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, R.W., Chinnasamy, S., Bhatnagar, A. et al. Effect of Biochemical Stimulants on Biomass Productivity and Metabolite Content of the Microalga, Chlorella sorokiniana . Appl Biochem Biotechnol 162, 2400–2414 (2010). https://doi.org/10.1007/s12010-010-9012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9012-2

Keywords

Navigation