Skip to main content
Log in

Enantioselective Resolution of γ-Lactam by a Whole Cell of Microbacterium hydrocarbonoxydans (L29-9) Immobilized in Polymer of PVA–Alginate–Boric Acid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Using immobilized cells of a novel strain of Microbacterium hydrocarbonoxydans L29-9 in polymers of polyvinyl alcohol (PVA)–alginate–boric acid, enantioselective resolution of racemic γ-lactam to produce (−)γ-lactam was successfully carried out. A 6:1 ratio of PVA:sodium alginate not only prevented agglomeration of the matrix but also produced beads with high gel strength. The optimum biotransformation conditions were 1 g/L substrate, pH 7.0, reaction temperature of 30 °C, and reaction time of 3 h. After every two cycles, the immobilized cell beads were separated and immersed in 0.5 mM KCl solution at 4 °C for preservation. At optimum conditions, the enantiomeric excess and the yield of (−)γ-lactam were >99% and 34%, respectively. The beads showed a slight decrease in the enantiomeric excess when re-used up to 14 cycles (the enantioselectivity of the immobilized cells decreased slightly after 14 cycles of usage).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Patel, R. N. (2001). Current Opinion in Biotechnology, 12, 587–604.

    Article  CAS  Google Scholar 

  2. Weston, M. D. (2008). The comprehensive pharmacology reference. Amsterdam: Elsevier Inc.

    Google Scholar 

  3. Nakano, H., Iwasa, K., Okuyama, Y., & Hongo, H. (1996). Tetrahedron: Asymmdtry, 7, 2381–2386.

    Article  CAS  Google Scholar 

  4. Taylor, S. J. C., Cague, R. M., Wisdom, R., Lee, C., & Dickson, K. (1993). Tetrahedron: Asymmdtry, 4, 1117–1128.

    Article  CAS  Google Scholar 

  5. Mahmoudian, M., Lowdon, A., Jones, M., Dawson, M., & Wallis, C. (1999). Tetrahedron: Asymmdtry, 10, 1201–1206.

    Article  CAS  Google Scholar 

  6. Taylor, S. J. C., Brown, R. C., Keene, P. A., & Taylor, I. N. (1999). Bioorganic & Medicinal Chemistry, 7, 2163–2168.

    Article  CAS  Google Scholar 

  7. Talor, S. J. C., Sutherland, A. G., Lee, C., Wisdom, R., Thomas, S., Roberts, S. M., et al. (1990). Journal of the Chemical Society, Chemical Communications, 16, 1120–1121.

    Article  Google Scholar 

  8. Toogood, H. S., Brown, R. C., Line, K., Keene, P. A., Taylor, S. J. C., Cague, R. M., et al. (2004). Tetrahedron, 60, 711–716.

    Article  CAS  Google Scholar 

  9. Fernandes, P., Vidinha, P., Ferreira, T., Silvestre, H., Cabral, J. M. S., & Prazeres, D. M. F. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19, 353–361.

    Article  Google Scholar 

  10. Fatima, Y., Kansal, H., Soni, P., & Banerjee, U. C. (2007). Process Biochemistry, 42, 1412–1418.

    Article  CAS  Google Scholar 

  11. Ellaiah, P., Prabhakar, T., Ramakrishna, B., Thaer Taleb, A., & Adinarayana, K. (2004). Process Biochemistry, 39, 525–528.

    Article  CAS  Google Scholar 

  12. Li, G. Y., Huang, K. L., Jiang, Y. R., & Ding, P. (2007). Process Biochemistry, 42, 1465–1469.

    Article  CAS  Google Scholar 

  13. Lozinsky, V. I., & Plieva, F. M. (1998). Enzyme and Microbial Technology, 23, 227–242.

    Article  CAS  Google Scholar 

  14. Antczak, M. S., & Galas, E. (2001). Biomolecular Engineering, 17, 55–63.

    Article  Google Scholar 

  15. Wu, K. Y. A., & Wisecarver, K. D. (1992). Biotechnology and Bioengineering, 39, 447–449.

    Article  CAS  Google Scholar 

  16. Dave, R., & Madamwar, D. (2006). Process Biochemistry, 41, 951–955.

    Article  CAS  Google Scholar 

  17. Long, Z. E., Huang, Y. H., Cai, Z. L., Cong, W., & Ouyang, F. (2004). Process Biochemistry, 39, 2129–2133.

    Article  CAS  Google Scholar 

  18. Chen, C. S., Wu, S. H., Girdaukas, G. S., & Sih, C. J. (1982). Journal of the American Chemical Society, 104, 7294–7299.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 863 program (2006AA02Z250); the 973 program (2004CB719606); the Ministry of Science and Technology, China; the Open Fund of State Key Laboratory of Microbial Resources, the Institute of Microbiology, the Chinese Academy of Sciences (SKLMR-08060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Zheng.

Additional information

Qin and Wang shared the first author of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X., Wang, J. & Zheng, G. Enantioselective Resolution of γ-Lactam by a Whole Cell of Microbacterium hydrocarbonoxydans (L29-9) Immobilized in Polymer of PVA–Alginate–Boric Acid. Appl Biochem Biotechnol 162, 2345–2354 (2010). https://doi.org/10.1007/s12010-010-9007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9007-z

Keywords

Navigation