Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2345–2354 | Cite as

Enantioselective Resolution of γ-Lactam by a Whole Cell of Microbacterium hydrocarbonoxydans (L29-9) Immobilized in Polymer of PVA–Alginate–Boric Acid

  • Xiaoxi Qin
  • Jianjun Wang
  • Guojun ZhengEmail author


Using immobilized cells of a novel strain of Microbacterium hydrocarbonoxydans L29-9 in polymers of polyvinyl alcohol (PVA)–alginate–boric acid, enantioselective resolution of racemic γ-lactam to produce (−)γ-lactam was successfully carried out. A 6:1 ratio of PVA:sodium alginate not only prevented agglomeration of the matrix but also produced beads with high gel strength. The optimum biotransformation conditions were 1 g/L substrate, pH 7.0, reaction temperature of 30 °C, and reaction time of 3 h. After every two cycles, the immobilized cell beads were separated and immersed in 0.5 mM KCl solution at 4 °C for preservation. At optimum conditions, the enantiomeric excess and the yield of (−)γ-lactam were >99% and 34%, respectively. The beads showed a slight decrease in the enantiomeric excess when re-used up to 14 cycles (the enantioselectivity of the immobilized cells decreased slightly after 14 cycles of usage).


Abacavir Enantioselective resolution γ-Lactam Immobilized Microbacterium hydrocarbonoxydans cells Polyvinyl alcohol 



This work was supported by the 863 program (2006AA02Z250); the 973 program (2004CB719606); the Ministry of Science and Technology, China; the Open Fund of State Key Laboratory of Microbial Resources, the Institute of Microbiology, the Chinese Academy of Sciences (SKLMR-08060).


  1. 1.
    Patel, R. N. (2001). Current Opinion in Biotechnology, 12, 587–604.CrossRefGoogle Scholar
  2. 2.
    Weston, M. D. (2008). The comprehensive pharmacology reference. Amsterdam: Elsevier Inc.Google Scholar
  3. 3.
    Nakano, H., Iwasa, K., Okuyama, Y., & Hongo, H. (1996). Tetrahedron: Asymmdtry, 7, 2381–2386.CrossRefGoogle Scholar
  4. 4.
    Taylor, S. J. C., Cague, R. M., Wisdom, R., Lee, C., & Dickson, K. (1993). Tetrahedron: Asymmdtry, 4, 1117–1128.CrossRefGoogle Scholar
  5. 5.
    Mahmoudian, M., Lowdon, A., Jones, M., Dawson, M., & Wallis, C. (1999). Tetrahedron: Asymmdtry, 10, 1201–1206.CrossRefGoogle Scholar
  6. 6.
    Taylor, S. J. C., Brown, R. C., Keene, P. A., & Taylor, I. N. (1999). Bioorganic & Medicinal Chemistry, 7, 2163–2168.CrossRefGoogle Scholar
  7. 7.
    Talor, S. J. C., Sutherland, A. G., Lee, C., Wisdom, R., Thomas, S., Roberts, S. M., et al. (1990). Journal of the Chemical Society, Chemical Communications, 16, 1120–1121.CrossRefGoogle Scholar
  8. 8.
    Toogood, H. S., Brown, R. C., Line, K., Keene, P. A., Taylor, S. J. C., Cague, R. M., et al. (2004). Tetrahedron, 60, 711–716.CrossRefGoogle Scholar
  9. 9.
    Fernandes, P., Vidinha, P., Ferreira, T., Silvestre, H., Cabral, J. M. S., & Prazeres, D. M. F. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19, 353–361.CrossRefGoogle Scholar
  10. 10.
    Fatima, Y., Kansal, H., Soni, P., & Banerjee, U. C. (2007). Process Biochemistry, 42, 1412–1418.CrossRefGoogle Scholar
  11. 11.
    Ellaiah, P., Prabhakar, T., Ramakrishna, B., Thaer Taleb, A., & Adinarayana, K. (2004). Process Biochemistry, 39, 525–528.CrossRefGoogle Scholar
  12. 12.
    Li, G. Y., Huang, K. L., Jiang, Y. R., & Ding, P. (2007). Process Biochemistry, 42, 1465–1469.CrossRefGoogle Scholar
  13. 13.
    Lozinsky, V. I., & Plieva, F. M. (1998). Enzyme and Microbial Technology, 23, 227–242.CrossRefGoogle Scholar
  14. 14.
    Antczak, M. S., & Galas, E. (2001). Biomolecular Engineering, 17, 55–63.CrossRefGoogle Scholar
  15. 15.
    Wu, K. Y. A., & Wisecarver, K. D. (1992). Biotechnology and Bioengineering, 39, 447–449.CrossRefGoogle Scholar
  16. 16.
    Dave, R., & Madamwar, D. (2006). Process Biochemistry, 41, 951–955.CrossRefGoogle Scholar
  17. 17.
    Long, Z. E., Huang, Y. H., Cai, Z. L., Cong, W., & Ouyang, F. (2004). Process Biochemistry, 39, 2129–2133.CrossRefGoogle Scholar
  18. 18.
    Chen, C. S., Wu, S. H., Girdaukas, G. S., & Sih, C. J. (1982). Journal of the American Chemical Society, 104, 7294–7299.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical TechnologyBeijingChina
  2. 2.State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijingChina

Personalised recommendations