Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2333–2344 | Cite as

Strain-Dependent Carotenoid Productions in Metabolically Engineered Escherichia coli

  • Han Seung Chae
  • Kong-Hwan Kim
  • Sun Chang Kim
  • Pyung Cheon LeeEmail author


Seven Escherichia coli strains, which were metabolically engineered with carotenoid biosynthetic pathways, were systematically compared in order to investigate the strain-specific formation of carotenoids of structural diversity. C30 acyclic carotenoids, diaponeurosporene and diapolycopene were well produced in all E. coli strains tested. However, the C30 monocyclic diapotorulene formation was strongly strain dependent. Reduced diapotorulene formation was observed in the E. coli strain Top10, MG1655, and MDS42 while better formation was observed in the E. coli strain JM109, SURE, DH5a, and XL1-Blue. Interestingly, C40 carotenoids, which have longer backbones than C30 carotenoids, also showed strain dependency as C30 diapotorulene did. Quantitative analysis showed that the SURE strain was the best producer for C40 acyclic lycopene, C40 dicyclic β-carotene, and C30 monocyclic diapotorulene. Of the seven strains examined, the highest volumetric productivity for most of the carotenoids structures was observed in the recombinant SURE strain. In conclusion, we showed that recombinant hosts and carotenoid structures influenced carotenoid productions significantly, and this information can serve as the basis for the subsequent development of microorganisms for carotenoids of interest.


Carotenoids E. coli Strain dependency Metabolic engineering Pathway engineering 



This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2009-0066612 and NRF-2009-C1AAA001-2009-0093062). This work was also supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093826).


  1. 1.
    Lee, P. C., & Schmidt-Dannert, C. (2002). Applied Microbiology and Biotechnology, 60, 1–11.CrossRefGoogle Scholar
  2. 2.
    Vershinin, A. (1999). Biofactors, 10, 99–104.CrossRefGoogle Scholar
  3. 3.
    Johnson, E., & Schroeder, W. (1995). Advances in Biochemical Engineering/Biotechnology, 53, 119–178.CrossRefGoogle Scholar
  4. 4.
    Lee, P. C., Momen, A. Z. R., Mijts, B. N., & Schmidt-Dannert, C. (2003). Chemistry & Biology, 10, 453–462.CrossRefGoogle Scholar
  5. 5.
    Mijts, B. N., Lee, P. C., & Schmidt-Dannert, C. (2005). Chemistry & Biology, 12, 453–460.CrossRefGoogle Scholar
  6. 6.
    Ye, R. W., Yao, H., Stead, K., Wang, T., Tao, L., Cheng, Q., et al. (2007). Journal of Industrial Microbiology & Biotechnology, 34, 289–299.CrossRefGoogle Scholar
  7. 7.
    Tao, L., Yao, H., & Cheng, Q. (2007). Gene, 386, 90–97.CrossRefGoogle Scholar
  8. 8.
    Lee, P. C., Yoon, Y. G., & Schmidt-Dannert, C. (2009). Journal of Biotechnology, 140, 227–233.CrossRefGoogle Scholar
  9. 9.
    Bhataya, A., Schmidt-Dannert, C., & Lee, P. C. (2009). Process Biochemistry, 44, 1095–1102.CrossRefGoogle Scholar
  10. 10.
    Das, A., Yoon, S. H., Lee, S. H., Kim, J. Y., Oh, D. K., & Kim, S. W. (2007). Applied Microbiology and Biotechnology, 77, 505–512.CrossRefGoogle Scholar
  11. 11.
    Lee, P. C., Mijts, B. N., & Schmidt-Dannert, C. (2004). Applied Microbiology and Biotechnology, 65, 538–546.Google Scholar
  12. 12.
    Farmer, W. R., & Liao, J. C. (2000). Nature Biotechnology, 18, 533–537.CrossRefGoogle Scholar
  13. 13.
    Matthews, P. D., & Wurtzel, d E T. (2000). Applied Microbiology and Biotechnology, 53, 396–400.CrossRefGoogle Scholar
  14. 14.
    Yoon, S. H., Park, H. M., Kim, J. E., Lee, S. H., Choi, M. S., Kim, J. Y., et al. (2007). Biotechnology Progress, 23, 599–605.CrossRefGoogle Scholar
  15. 15.
    Yoon, S. H., Lee, Y. M., Kim, J. E., Lee, S. H., Lee, J. H., Kim, J. Y., et al. (2006). Biotechnology and Bioengineering, 94, 1025–1032.CrossRefGoogle Scholar
  16. 16.
    Kupisz, K., Sujak, A., Patyra, M., Trebacz, K., & Gruszecki, W. I. (2008). BBA-Biomembranes, 1778, 2334–2340.CrossRefGoogle Scholar
  17. 17.
    Kim, S. W., & Keasling, J. D. (2001). Biotechnology and Bioengineering, 72, 408–415.CrossRefGoogle Scholar
  18. 18.
    Kim, J., Kong, M. K., & Lee, P. C. (2010). World Journal of Microbiology & Biotechnology. doi: 10.1007/s11274-010-0408-5.Google Scholar
  19. 19.
    Britton, G., Liaaen-Jensen, S., Pfander, H. (1995). Birkhauser, Basel.Google Scholar
  20. 20.
    Schmidt-Dannert, C., Lee, P., & Mijts, B. (2006). Phytochemistry Reviews, 5, 67–74.CrossRefGoogle Scholar
  21. 21.
    Lee, J., Sung, B., Kim, M., Blattner, F., Yoon, B., Kim, J., et al. (2009). Microbial Cell Factories, 8, 2.CrossRefGoogle Scholar
  22. 22.
    Yoshikuni, Y., Dietrich, J. A., Nowroozi, F. F., Babbitt, P. C., & Keasling, J. D. (2008). Chemistry & Biology, 15, 607–618.CrossRefGoogle Scholar
  23. 23.
    Yu, B. J., Sung, B. H., Koob, M. D., Lee, C. H., Lee, J. H., Lee, W. S., et al. (2002). Nature Biotechnology, 20, 1018–1023.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Han Seung Chae
    • 1
  • Kong-Hwan Kim
    • 1
  • Sun Chang Kim
    • 2
  • Pyung Cheon Lee
    • 1
    Email author
  1. 1.Department of Molecular Science and Technology and Department of BiotechnologyAjou UniversitySuwonSouth Korea
  2. 2.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyTaejonSouth Korea

Personalised recommendations