Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2313–2323 | Cite as

Formic Acid as a Potential Pretreatment Agent for the Conversion of Sugarcane Bagasse to Bioethanol

  • Raveendran Sindhu
  • Parameswaran Binod
  • Karri Satyanagalakshmi
  • Kanakambaran Usha Janu
  • Kuttavan Valappil Sajna
  • Noble Kurien
  • Rajeev Kumar Sukumaran
  • Ashok PandeyEmail author


In recent years, growing attention has been focused on the use of lignocellulosic biomass as a feedstock for the production of ethanol, a possible renewable alternative to fossil fuels. Several pretreatment processes have been developed for decreasing the biomass recalcitrance, but only a few of them seem to be promising. In this study, effect of various organic solvents and organic acids on the pretreatment of sugarcane bagasse was studied. Among the different organic acids and organic solvents tested, formic acid was found to be effective. Optimization of process parameters for formic acid pretreatment was carried out. The structural changes before and after pretreatment was investigated by scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was more for pretreated biomass than that of untreated. The FTIR spectra shown at the stretching of hydrogen bonds of pretreated sugarcane bagasse arose at higher number. It also revealed that the cellulose content in the solid residue increased because the hemicelluloses fraction in raw materials was released by acid hydrolytic reaction.


Sugarcane bagasse Bioethanol Formic acid Pretreatment Lignocellulosic biomass 



Authors are grateful to the Technology Information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, Government of India, and Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support to the Centre for Biofuels at NIIST.


  1. 1.
    Pandey, A., Biswas, S., Sukumaran, R. K., & Kaushik, N. (2009). Study on availability of Indian biomass resources for exploitation: a report based on a nation-wise survey. New Delhi: Published by TIFAC.Google Scholar
  2. 2.
    Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U., Sajna, K. V., et al. (2010). Bioresource Technology, 101(14), 4767–4774.Google Scholar
  3. 3.
    Bryant, C., & Yassumoto, W. Y. (2009). International Sugar Journal, 111, 696–700.Google Scholar
  4. 4.
    Gamez, S., Gonzales-Cabrialez, J. J., Ramirez, J. A., Garrote, G., & Vazquez, M. (2006). Journal of Food Engineering, 74, 78–88.CrossRefGoogle Scholar
  5. 5.
    Rabelo, S. C., Maciel, R., & Costa, A. C. (2009). Applied Biochemistry and Biotechnology, 153, 139–150.CrossRefGoogle Scholar
  6. 6.
    Sinitsyn, A. P., Gusakov, A. V., & Vlasenko, E. Y. (1991). Applied Biochemistry and Biotechnology, 30, 43–59.CrossRefGoogle Scholar
  7. 7.
    Martın, C., & Thomsen, A. B. (2007). Journal of Chemical Technology and Biotechnology, 82, 174–181.CrossRefGoogle Scholar
  8. 8.
    Patel, S. J., Onkarappa, R., & Shobha, K. S. (2007). Electronic Journal of Environmental Agricultural and Food Chemistry, 6, 1921–1926.Google Scholar
  9. 9.
    Araque, E., Parra, C., Freer, J., Contreras, D., Rodriguez, J., Mendonca, R., et al. (2008). Enzyme and Microbial Technology, 43, 214–219.CrossRefGoogle Scholar
  10. 10.
    Argyropoulos, D., & Argyropoulos, D. S. (2008). US Patent No. US2008190013-A1.Google Scholar
  11. 11.
    Zhao, X. B., Cheng, K. K., & Liu, D. H. (2009). Applied Microbiology and Biotechnology, 82, 815–827.CrossRefGoogle Scholar
  12. 12.
    Carrasco, C., Baudel, H. M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., et al. (2010). Enzyme and Microbial Technology, 46, 64–73.CrossRefGoogle Scholar
  13. 13.
    Muurinen, E. (2000). Department of Process, Engineering, University of Oulu, FIN-90014 University of Oulu, Finland.Google Scholar
  14. 14.
    Xu, J., Thomsen, M. H., & Thomsen, A. B. (2009). Journal of Biotechnology, 139, 300–305.CrossRefGoogle Scholar
  15. 15.
    Sun, Y., Lin, L., Deng, H. B., Li, J. Z., He, B. H., Sun, R. C., et al. (2008). Bioresources, 3, 297–315.Google Scholar
  16. 16.
    Sun, Y., Lin, L., Pang, C. S., Deng, H. B., Peng, H., Li, J. Z., et al. (2007). Energy & Fuels, 21, 2386–2389.CrossRefGoogle Scholar
  17. 17.
    Li, H., Kim, N. J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Bioresource Technology, 100, 3245–3251.CrossRefGoogle Scholar
  18. 18.
    Itoh, H., Wada, M., Honda, Y., Kuwahara, M., & Watanabe, T. (2003). Journal of Biotechnology, 103, 273–280.CrossRefGoogle Scholar
  19. 19.
    Sun, F., & Chen, H. Z. (2008). Bioresource Technology, 99, 5474–5479.CrossRefGoogle Scholar
  20. 20.
    McDonough, T. J. (1993). Tappi Journal, 76, 186–193.Google Scholar
  21. 21.
    Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33.CrossRefGoogle Scholar
  22. 22.
    Segal, L., Greely, J. J., Martin, A. E. J., & Conrad, L. M. (1959). Textile Research Journal, 29, 780–794.CrossRefGoogle Scholar
  23. 23.
    Zhou, D., Zhang, L., & Guo, S. (2005). Water Research, 39, 3755–3762.CrossRefGoogle Scholar
  24. 24.
    Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., et al. (2005). Carbohydrate Research, 340, 2376–2391.CrossRefGoogle Scholar
  25. 25.
    Miller, G. M. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  26. 26.
    Aswathy, U. S., Sukumaran, R. K., Devi, G. L., Rajasree, K. P., Singhania, R. R., & Pandey, A. (2010). Bioresource Technology, 101, 925–930.CrossRefGoogle Scholar
  27. 27.
    Sukumaran, R., Singhania, R. R., Mathew, G., & Pandey, A. (2009). Renewable Energy, 34, 421–424.CrossRefGoogle Scholar
  28. 28.
    Wang, L., Han, G., & Zhang, Y. (2007). Carbohydrate Polymers, 69, 391–397.CrossRefGoogle Scholar
  29. 29.
    Pandey, K. K. (2005). Polymer Degradation and Stability, 90, 9–20.CrossRefGoogle Scholar
  30. 30.
    Cao, Y., & Tan, H. (2004). Journal of Molecular Structure, 705, 189–193.CrossRefGoogle Scholar
  31. 31.
    Colom, X., & Carrillo, F. (2002). European Polymer Journal, 38, 2225–2230.CrossRefGoogle Scholar
  32. 32.
    Oh, S. Y., Yoo, D. I., Shin, Y., & Seo, G. (2005). Carbohydrate Research, 340, 417–428.CrossRefGoogle Scholar
  33. 33.
    Hsu, T.,Gua, G.,Chen, W., & Hwang, W. (2009). Bioresource Technology, (in press).Google Scholar
  34. 34.
    Bak, S. J., Ja, K. K., Young, H. H., Byung, C. L., In-Geol, C., & Heon, K. K. (2009). Bioresource Technology, 100, 1285–1290.CrossRefGoogle Scholar
  35. 35.
    Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I.-G., Kim, T. H., et al. (2009). Bioresource Technology, 100, 4374–4380.CrossRefGoogle Scholar
  36. 36.
    Mantanis, G. I., Young, R. A., & Rowell, R. M. (1995). Cellulose, 2, 1–22.Google Scholar
  37. 37.
    Binod, P., Sindhu, R., Singhania, R. R., Surender, J. S., Devi, L., Nagalakshmi, S., et al. (2010). Bioresource Technology, 101(14), 4826–4833.Google Scholar
  38. 38.
    Xu, J., Thomsen, M. H., & Thomsen, A. B. (2009). Journal of Microbiology and Biotechnology, 19, 845–850.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raveendran Sindhu
    • 1
  • Parameswaran Binod
    • 1
  • Karri Satyanagalakshmi
    • 1
  • Kanakambaran Usha Janu
    • 1
  • Kuttavan Valappil Sajna
    • 1
  • Noble Kurien
    • 1
  • Rajeev Kumar Sukumaran
    • 1
  • Ashok Pandey
    • 1
    Email author
  1. 1.Centre for Biofuels, National Institute for Interdisciplinary Science and TechnologyCouncil of Scientific and Industrial ResearchTrivandrumIndia

Personalised recommendations