Skip to main content

Advertisement

Log in

Insights into pH-Induced Conformational Transition of β-Galactosidase from Pisum sativum Leading to its Multimerization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Although β-galactosidases are physiologically a very important enzyme and have may therapeutics applications, very little is known about the stability and the folding aspects of the enzyme. We have used β-galactosidase from Pisum sativum (PsBGAL) as model system to investigate stability, folding, and function relationship of β-galactosidases. PsBGAL is a vacuolar protein which has a tendency to multimerize at acidic pH with protein concentration ≥100 μg mL−1 and dissociates into its subunits above neutral pH. It exhibits maximum activity as well as stability under acidic conditions. Further, it has different conformational orientations and core secondary structures at different pH. Substantial predominance of β-content and interfacial interactions through Trp residues play crucial role in pH-dependent multimerization of enzyme. Equilibrium unfolding of PsBGAL at acidic pH follows four-state model when monitored by changes in the secondary structure with two intermediates: one resembling to molten globule-like state while unfolding seen from activity and tertiary structure of PsBGAL fits to two-state model. Unfolding of PsBGAL at higher pH always follows two-state model. Furthermore, unfolding of PsBGAL reveals that it has at least two domains: α/β barrel containing catalytic site and the other is rich in β-content responsible for enzyme multimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dwevedi, A., & Kayastha, A. M. (2009). Journal of Agricultural and Food Chemistry, 57, 7086–7096.

    Article  CAS  Google Scholar 

  2. Dwevedi, A., & Kayastha, A. M. (2009). Journal of Agricultural and Food Chemistry, 57, 682–688.

    Article  CAS  Google Scholar 

  3. Uhrig, J. F., Soellick, T.-R., Minke, C. J., Philipp, C., Kellmann, J.-W., & Schreier, P. H. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 55–60.

    Article  CAS  Google Scholar 

  4. Dubey, V. K., Pande, M., Singh, B. K., & Jagannadham, M. V. (2007). African Journal of Biotechnology, 6, 1077–1086.

    CAS  Google Scholar 

  5. Heyworth, C. M., Neumann, E. F., & Wynn, C. H. (1981). Biochemical Journal, 193, 773–779.

    CAS  Google Scholar 

  6. Hoogeveen, A. T., Verheijen, F. W., & Galjaard, H. (1983). The Journal of Biological Chemistry, 258, 12143–12146.

    CAS  Google Scholar 

  7. Potier, M., Michaud, L., Tranchemontagne, J., & Thauvette, L. (1990). The Biochemical Journal, 267, 197–202.

    CAS  Google Scholar 

  8. Yamamoto, Y., Fujie, M., & Nishimura, K. (1982). Journal of Biochemistry, 92, 13–21.

    CAS  Google Scholar 

  9. Pridham, J. B., & Dey, P. M. (1984). In A. Meister (Ed.), Advances in enzymology & related areas of molecular biology (Vol. 56, pp. 83–96). New York: Wiley.

    Google Scholar 

  10. Sue, M., Yamazaki, K., Yajima, S., Nomura, T., Matsukawa, T., Iwamura, H., et al. (2006). Plant Physiology, 141, 1237–1247.

    Article  CAS  Google Scholar 

  11. Strasser, R., Bondili, J. S., Schoberer, J., Svoboda, B., Liebminger, E., Glössl, J., et al. (2007). Plant Physiology, 145, 5–16.

    Article  CAS  Google Scholar 

  12. Frandsen, T. P., Lok, F., Mirgorodskaya, E., Roepstorff, P., & Svensson, B. (2000). Plant Physiology, 123, 275–286.

    Article  CAS  Google Scholar 

  13. Dey, P. M., Campillo, E. M. D., & Lezica, R. P. (1983). The Journal of Biological Chemistry, 258, 923–929.

    CAS  Google Scholar 

  14. Dey, P. M., Pridham, J. B., & Sumar, N. K. (1982). Phytochemistry, 21, 180–186.

    Google Scholar 

  15. Dey, P. M. (1984). European Journal of Biochemistry, 140, 385–390.

    Article  CAS  Google Scholar 

  16. Goldstein, U., Hughes, R. C., Monsigny, M., Osawa, T., & Sharon, N. (1980). Nature, 285, 66.

    Article  Google Scholar 

  17. Nallamsetty, S., Dubey, V. K., Pande, M., Ambasht, P. K., & Jagannadham, M. V. (2007). Biochimie, 89, 1416–1424.

    Article  CAS  Google Scholar 

  18. Fernandez, A., & Scheraga, H. A. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 113–118.

    Article  CAS  Google Scholar 

  19. Clackson, T., & Wells, J. A. (1995). Science, 267, 383–386.

    Article  CAS  Google Scholar 

  20. Bogan, A. A., & Thorn, K. S. (1998). Journal of Molecular Biology, 280, 1–9.

    Article  CAS  Google Scholar 

  21. Ma, B., Elkayam, T., Wolfson, H., & Nussinov, R. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 5772–5777.

    Article  CAS  Google Scholar 

  22. Levy, Y., Wolynes, P. G., & Onuchic, J. N. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 511–516.

    Article  CAS  Google Scholar 

  23. Schmid, F. X. (1998). In T. Creighton (Ed.), Protein structure, a practical approach (pp. 261–296). New York: IRL Press.

    Google Scholar 

  24. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Balasubramanian, D., & Kumar, C. (1976). Applied Spectroscopy Reviews, 11, 223–286.

    Article  CAS  Google Scholar 

  26. Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, F., & Gilmanshin, R. I. (1991). Biopolymers, 31, 119–128.

    Article  CAS  Google Scholar 

  27. Khurana, R., & Udgaonkar, J. B. (1994). Biochemistry, 33, 106–115.

    Article  CAS  Google Scholar 

  28. Park, Y. C., & Bedouelle, H. (1998). The Journal of Biological Chemistry, 273, 18052–18059.

    Article  CAS  Google Scholar 

  29. Manavalan, P., & Johnson, W. C. (1983). Nature, 305, 831–832.

    Article  CAS  Google Scholar 

  30. Golczak, M., Kicinska, A., Pikula, J. B., Buchet, R., Szewczyk, A., & Pikula, S. (2001). The FASEB Journal, 15, 1083–1085.

    CAS  Google Scholar 

  31. Carneiro, F. A., Ferradosa, A. S., & Da Poian, A. T. (2001). The Journal of Biological Chemistry, 276, 62–67.

    Article  CAS  Google Scholar 

  32. Ruano, M. L. F., Pérez-Gil, J., & Casals, C. (1998). The Journal of Biological Chemistry, 273, 15183–15191.

    Article  CAS  Google Scholar 

  33. Gasset, M., Baldwin, M. A., Fletterick, R. J., & Prusiner, S. B. (1993). Proceedings of the National Academy of Sciences of the United States of America, 90, 1–5.

    Article  CAS  Google Scholar 

  34. Zhou, N. E., Mant, C. T., & Hodges, R. S. (1990). Peptide Research, 3, 8–20.

    CAS  Google Scholar 

  35. Tsai, C. J., Lin, S. L., Wolfson, H. J., & Nussinov, R. (1997). Protein Science, 6, 53–64.

    Article  CAS  Google Scholar 

  36. Halfman, C. J., & Nishida, T. (1971). Biochimica et Biophysica Acta, 243, 294–303.

    CAS  Google Scholar 

  37. Dahms, T. E. S., & Szabo, A. G. (1995). Biophysical Journal, 69, 569–576.

    Article  CAS  Google Scholar 

  38. Matulis, D., & Lovrien, R. (1998). Biophysical Journal, 74, 422–429.

    Article  CAS  Google Scholar 

  39. Pace, C. N. (1975). Critical Reviews in Biochemistry, 3, 1–43.

    Article  CAS  Google Scholar 

  40. Brinda, K. V., & Vishveshwara, S. (2005). BMC Bioinformatics, 6, 296–311.

    Article  CAS  Google Scholar 

  41. Jones, S., & Thornton, J. M. (1996). Proceedings of the National Academy of Sciences of the United States of America, 93, 13–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

A.D. would like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance in the form of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind M. Kayastha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwevedi, A., Dubey, V.K., Jagannadham, M.V. et al. Insights into pH-Induced Conformational Transition of β-Galactosidase from Pisum sativum Leading to its Multimerization. Appl Biochem Biotechnol 162, 2294–2312 (2010). https://doi.org/10.1007/s12010-010-9003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9003-3

Keywords

Navigation