Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2259–2272 | Cite as

Industrial Sustainability of Competing Wood Energy Options in Canada

  • Emmanuel K. AckomEmail author
  • Warren E. Mabee
  • John N. Saddler
Article

Abstract

The amount of sawmill residue available in Canada to support the emerging cellulosic ethanol industry was examined. A material flow analysis technique was employed to determine the amount of sawmill residue that could possibly be available to the ethanol industry per annum. A combination of two key trends—improved efficiency of lumber recovery and increased uptake of sawmill residues for self-generation and for wood pellet production—have contributed to a declining trend of sawmill residue availability. Approximately 2.3 × 106 bone-dry tonnes per year of sawmill residue was estimated to be potentially available to the cellulosic ethanol industry in Canada, yielding 350 million liters per year of cellulosic ethanol using best practices. An additional 2.7 billion liters of cellulosic ethanol might be generated from sawmill residue that is currently used for competing wood energy purposes, including wood pellet generation. Continued competition between bioenergy options will reduce the industrial sustainability of the forest industry. Recommendations for policy reforms towards improved industrial sustainability practices are provided.

Keywords

Cellulosic ethanol Wood pellets Industrial sustainability Material flow analysis Sawmill residues 

Notes

Acknowledgments

The authors would like to thank the International Energy Agency (IEA) Bioenergy Task 39 “Liquid biofuels” and Natural Resources Canada for providing funds that have supported this work.

References

  1. 1.
    WWI (Worldwatch Institute). (2009). State of the world: Into a warming world. Washington: Earthscan. 205.Google Scholar
  2. 2.
    Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., John Cairney, J., Eckert, C. A., et al. (2006). Science, 311(5760), 484–489.CrossRefGoogle Scholar
  3. 3.
    CRFA (2009) Canadian renewable fuels association. Accessed on June 3, 2009. http://www.greenfuels.org.
  4. 4.
    Bill C-33 (2008) An Act to amend the Canadian Environmental Protection Act, 1999. Accessed on June 12, 2009. p. 11. http://www2.parl.gc.ca/Content/LOP/LegislativeSummaries/39/2/c33-e.pdf.
  5. 5.
    Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.CrossRefGoogle Scholar
  6. 6.
    Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Proceedings of the National Academy of Science (USA), 103, 11206–11210.CrossRefGoogle Scholar
  7. 7.
    De Oliveira, M. E. D., Vaughan, B. E., & Rykiel, E. J., Jr. (2005). Bioscience, 55, 593–603.CrossRefGoogle Scholar
  8. 8.
    Wang, M. (2001). Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies. Technical Report ANL/ESD/TM-163. Argonne National Laboratory, Argonne, Illinois, USA. p. 40.Google Scholar
  9. 9.
    Shapouri, H., & McAloon, A. (2004). The 2001 net energy balance of corn ethanol (p. 6). Washington: U.S. Department of Agriculture. Accessed on May 31, 2009. www.usda.gov/oce/reports/energy/net_energy_balance.pdf.Google Scholar
  10. 10.
    Patzek, T. W. (2004). Critical Reviews in Plant Sciences, 23, 519–567.CrossRefGoogle Scholar
  11. 11.
    Pimentel, D., & Patzek, T. W. (2005). Natural Resources Research, 14, 65–76.CrossRefGoogle Scholar
  12. 12.
    Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). Environmental Science & Technology, 42, 5791.CrossRefGoogle Scholar
  13. 13.
    Tilman, D., Hill, J., & Lehman, C. (2006). Science, 314, 1598.CrossRefGoogle Scholar
  14. 14.
    Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Science, 219, 1235.CrossRefGoogle Scholar
  15. 15.
    Adler, P. R., Del Grosso, S. J., & Parton, W. J. (2007). Ecological Applications, 17, 675–691.CrossRefGoogle Scholar
  16. 16.
    Gibbs, H. K., Johnston, M., Foley, J. A., Holloway, T., Monfreda, C., Ramankutty, N., et al. (2008). Environmental Research Letters, 3, 034001–0340010.CrossRefGoogle Scholar
  17. 17.
    Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., et al. (2008). Science, 319, 1238–1240.CrossRefGoogle Scholar
  18. 18.
    Pineiro, G., Jobbagy, E. G., Baker, J., Murray, B. C., & Jackson, R. B. (2009). Ecological Applications, 19(2), 277–282.CrossRefGoogle Scholar
  19. 19.
    Dominguez-Faus, R., Powers, S. E., Burken, J. G., & Alvarez, P. J. (2009). Environmental Science & Technology, 43(9), 3005–3010.CrossRefGoogle Scholar
  20. 20.
    Chiu, Y.-W., Powers, S. E., Walseth, B., & Suh, S. (2009). Environmental Science & Technology, 43(8), 2688–2692.CrossRefGoogle Scholar
  21. 21.
    Graboski, M. S., & McClelland, J. (2005). A rebuttal to “Ethanol fuels: Energy, economics and environmental impacts” by D. Pimentel. Colorado School of Mines and National Corn Growers Association. p. 1.Google Scholar
  22. 22.
    Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B., & Woess-Gallasch, S. (2009). Resources, Conservation and Recycling, 53, 434–447.CrossRefGoogle Scholar
  23. 23.
    Anex, R. P., & Lifset, R. (2009). Journal of Industrial Ecology, 13(4), 479–482. doi: 10.1111/j.1530-9290.2009.00188.x.CrossRefGoogle Scholar
  24. 24.
    (S&T)2 Consultants (2009). An examination of the potential for improving carbon/energy balance in biofuels. Report prepared for the International Energy Agency (IEA) Bioenergy Task 39. p. 59.Google Scholar
  25. 25.
    Anex, R. P., & Lifset, R. (2009). Journal of Industrial Ecology, 13(6), 996–999.CrossRefGoogle Scholar
  26. 26.
    Liska, A. J., & Cassman, K. G. (2009). Journal of Industrial Ecology, 13(4), 508–513.CrossRefGoogle Scholar
  27. 27.
    Liska, A. J., & Cassman, K. G. (2009). Letter to the Editor: Responses to “ Comment on ‘Response to Plevin: Implications for Life Cycle Emissions Regulations’ and ‘Assessing Corn Ethanol: Relevance and Responsibility’”. Journal of Industrial Ecology. doi: 10.1111/j.1530-9290.2009.00187.x.Google Scholar
  28. 28.
    Plevin, R. J. (2009). Journal of Industrial Ecology, 13(4), 495–507.CrossRefGoogle Scholar
  29. 29.
    Plevin, R. J. (2009). Letter to the Editor: Comment on “Response to Plevin: Implications for Life Cycle Emissions Regulations”. Journal of Industrial Ecology. doi: 10.1111/j.1530-9290.2009.00174.x.Google Scholar
  30. 30.
    Chandra, R. P., Ewanick, S. M., Chung, P. A., Au-Yeung, K., Rio, L. D., Mabee, W. E., et al. (2009). Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnology Letters, 31, 1217–1222.CrossRefGoogle Scholar
  31. 31.
    Foust, T. (2009). Presentation to IEA Bioenergy Task 39. Dresden, Germany: June 3, 2009.Google Scholar
  32. 32.
    Lowe, J. J., Power, K., & Gray, S. L. (1994). Canada’s Forest Inventory 1991, Petawawa National Forestry Institute, Canadian Forest Service, Natural Resources Canada, Information Report PI-X-115, 1994. p. 24.Google Scholar
  33. 33.
    Brundtland, G. (ed.) (1987). Our common future: the world commission on environment and development. Oxford: Oxford University Press.Google Scholar
  34. 34.
    Paramanathan, S., Farrukh, C., Phaal, R., & Probert, D. R. (2004). R&D Management, 34(5), 527–537.CrossRefGoogle Scholar
  35. 35.
    Zeng, S. X., Liu, H. C., Tam, C. M., & Shao, Y. K. (2008). Journal of Cleaner Production, 16, 1090–1097.CrossRefGoogle Scholar
  36. 36.
    Bidwell, R., & Verfaillie, H. A. (2000). Measuring eco-efficiency: A guide to reporting company performance. Geneva: World Business Council for Sustainable Development.Google Scholar
  37. 37.
    Jansson, P. M., Gregory, M. J., Barlow, C., Phaal, R., Farrukh, C. J. P., & Probert, D. R. (2000). Industrial sustainability—a review of UK and international research and capabilities. Cambridge: University of Cambridge.Google Scholar
  38. 38.
    Perlack, R. D. (2005). Biomass as a feedstock for bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Technical Rep. ORNL/TM 2006/66, Oak Ridge National Laboratory. Oak Ridge, TN.Google Scholar
  39. 39.
    Davidsdottir, B., & Ruth, M. (2005). Journal of Industrial Ecology, 9(3), 191–211.CrossRefGoogle Scholar
  40. 40.
    Kleijn, R. (1999). Journal of Industrial Ecology, 3(2–3), 8–10.CrossRefGoogle Scholar
  41. 41.
    Bringezu, S., & Moriguchi, Y. (2002). Material flow analysis. In R. U. Ayres & L. Ayres (Eds.), Handbook of industrial ecology. Cheltenham: Elgar.Google Scholar
  42. 42.
    Wernick, I. K. (1998). Material flow accounts: Definition and data. In P. Vellinga, F. Berkhout, & J. Gupta (Eds.), Managing a material world: Perspective in Industry Ecology. Dordrecht: Kluwer.Google Scholar
  43. 43.
    Bringezu, S. (2003). Accounting for economy-wide material flows and resource productivity. International experts meeting on material flow accounts and resource productivity. November 25–26. Tokyo, Japan. p. 21.Google Scholar
  44. 44.
    Daniels, P. (2002). Journal of Industrial Ecology, 6(1), 65–88.CrossRefGoogle Scholar
  45. 45.
    Daniels, P., & Moore, S. (2002). Journal of Industrial Ecology, 5(4), 69–93.CrossRefGoogle Scholar
  46. 46.
    NRC. (2004). Materials count—the case for material flows analysis. National Research Council of the National Academies (p. 124). Washington: National Academies Press.Google Scholar
  47. 47.
    OECD (Organization for Economic Co-operation and Development). 2004. Chair's Summary: Working Group on Environmental Information and Outlooks. OECD Workshop on Material Flows and Related Indictors. OECD Environment Drectorate, June17–18, 2004 Helsinki, Finland. p. 14.Google Scholar
  48. 48.
    Wernick, I. K., Waggoner, P. E., & Ausubel, J. H. (1998). Journal of Industrial Ecology, 1(3), 125–145.CrossRefGoogle Scholar
  49. 49.
    Rogich, D. G. (1993). Non-renewable Resources, 5(4), 197–210.CrossRefGoogle Scholar
  50. 50.
    Thomas, V. M., & Graedel, T. E. (2003). Environmental Science & Technology, 37(23), 5383–5388.CrossRefGoogle Scholar
  51. 51.
    Ayres, R. U. (1978). Application of physical principles to economics. In R. U. Ayres (Ed.), Resources, environment and economics: Applications of the materials-energy balance principle (pp. 37–71). New York: Wiley.Google Scholar
  52. 52.
    Brunner, P., & Rechberger, H. (2004). Practical handbook of material flow analysis (p. 336). Boca Raton: Lewis.Google Scholar
  53. 53.
    Graedel, T. E., & Allenby, B. R. (1995). Industrial ecology (p. 416). Englewood Cliffs: Prentice Hall.Google Scholar
  54. 54.
    Sundin, E., Svensson, N., McLaren, J., & Jackson, J. (2002). Journal of Industrial Ecology, 5(3), 89–102.CrossRefGoogle Scholar
  55. 55.
    Horbach, J. (2005). Sustainability and innovation. In: Indicator systems for sustainable innovations. Physica. ISBN 3-7908-1553-5. p. 211.Google Scholar
  56. 56.
    Oliver-Sola, J., Nunez, M., Gabarrell, X., Boada, M., & Rieradevall, J. (2007). Journal Industrial Ecology, 11(2), 83–98.CrossRefGoogle Scholar
  57. 57.
    Dorf, R. C. (2001). Technology, humans and society: Toward a sustainable world. New York: Academic. 421pp.Google Scholar
  58. 58.
    Natural Resources Canada (2009). Timber Harvest Statistics. Accessed April 1, 2009. http://canadaforests.nrcan.gc.ca/statsprofile/forest/ca
  59. 59.
  60. 60.
    Hatton, T. (1999). Canadian wood residues: a profile of current surplus and regional concentrations. A report prepared for the National Climate Change Process Forest Sector Table. Canadian Forest Service. Industry, Economics and Programmes Branch. p. 15.Google Scholar
  61. 61.
    NRCAN & FPAC (2006). Natural Resources Canada and Forest Products Association of Canada. Estimated Production, Consumption & Surplus Mill Wood Residues in Canada-2004. A National Report. p. 73.Google Scholar
  62. 62.
    Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, J., Neilson, E. T., Carroll, A. L., et al. (2008). Nature, 452, 987–990.CrossRefGoogle Scholar
  63. 63.
    Westfall, J. (2007). 2006 summary of forest health conditions in British Columbia. Victoria: British Columbia Ministry of Forests and Range.Google Scholar
  64. 64.
    Walton, A., Hughes, J., Eng, M., Fall, A., Shore, T., Riel, B., et al. (2007). Provincial-level projection of the current mountain pine beetle Outbreak. Ministry of Forest and Range, Victoria, 2007. Accessed June 9, 2009. p. 10. http://www.for.gov.bc.ca/hre/bcmpb/BCMPB.v4.BeetleProjection.Update.pdf.
  65. 65.
    FAOStat (2009). FAO forestry statistics. Accessed June 3, 2009. http://www.fao.org.
  66. 66.
    Directive 2001/77/EC (2001). Directive on the promotion of electricity produced from renewable sources of energy in the internal market. p. 8. Accessed June 1, 2009. http://eur-lex.europa.eu/pri/en/oj/dat/2001/l_283/l_28320011027en00330040.pdf.
  67. 67.
    Roberts, D., Carreau, H., & Lethbridge, J. (2007). Convergence of the food, fuel, and fibre markets: A forest sector perspective. B.C. Forum Distinguished Lecture Series in Forest Economics and Policy. University of British Columbia. Canada. Accessed June 15, 2009. http://www.bc-forum.org/lectures.htm.
  68. 68.
    Mabee, W. E., & Saddler, J. N. (2010). Bioresource Technology, 101, 4806–4813. doi: 10.1016/j.biortech.2009.10.098.CrossRefGoogle Scholar
  69. 69.
    Magelli, F., Boucher, K., Bi, X. T., Melin, S., & Bonoli, A. (2009). Biomass & Bioenergy, 33, 434–441.CrossRefGoogle Scholar
  70. 70.
    Wood Pellet Association of Canada. (2009). Canadian Wood Pellet Industry Summary 2008. Presentation to the 2nd Annual Biomass Conference at Queen’s University, June 1, 2009. Accessed June 15, 2009. http://www.queensu.ca/sbc.
  71. 71.
    Laan, T., Litman, T. A. & Ronald, S. (2009). Biofuels at what cost? Government support for ethanol and biodiesel in Canada. Global Subsidies Initiative (GSI) International Institute for Sustainable Development (IISD). p. 118.Google Scholar
  72. 72.
    Tyner, W. E. (2008). BioScience, 58(7), 646–653.CrossRefGoogle Scholar
  73. 73.
    Simpson, D. R. (1999). Productivity in Natural Resource Industries: Improvement through Innovation. Resources for the future.Google Scholar
  74. 74.
    Ackom, E. K., & McFarlane, P. N. (2006). Impact of technological changes in the North American forest industry. Proceedings of the Second International Conference on Environmentally Compatible Forest Products. pp. 33–46.Google Scholar
  75. 75.
    Rosenberg, N., Ince, P., Skog, K., & Plantinga, A. (1990). Understanding the adoption of new technology in the forest products industry. Forest Products Journal, 40(10), 15–22.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Emmanuel K. Ackom
    • 1
    Email author
  • Warren E. Mabee
    • 2
  • John N. Saddler
    • 1
  1. 1.Forest Products Biotechnology, Faculty of ForestryUniversity of British ColumbiaVancouverCanada
  2. 2.Queen’s Institute for Energy and Environmental PolicyQueen’s UniversityKingstonCanada

Personalised recommendations