Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2244–2258 | Cite as

Xanthan Production on Polyurethane Foam and Its Enhancement by Air Pressure Pulsation

  • Zhi-guo Zhang
  • Hong-zhang ChenEmail author
Article

Abstract

In this study, we evaluated the feasibility of solid-state fermentation (SSF) on polyurethane foam (PUF) for xanthan production. The effects of air pressure pulsation (APP) on biomass accumulation and final xanthan concentration were also studied. Under suitable conditions (15% inoculum, 0.5-cm (side length) PUF cubes, 15 mL medium per gram cubes and 4.5 cm bed depth), the broth was dispersed on the PUF as a film. When the initial glucose concentration in the media was low (20 and 40 g L−1), there was no significant difference between the final xanthan concentration in static SSF and submerged fermentation (SMF). When high initial glucose concentrations (60 and 80 g L−1) were used, the final gum concentrations in SSF were much higher than those in SMF. When the APP technique was applied in xanthan production with a medium containing a high glucose concentration (80 g L−1), the oxygen consumption rate of Xanthomonas campestris was significantly enhanced at the later stages of fermentation, and both the biomass and xanthan concentration were improved. The results indicated that SSF on PUF is suitable for xanthan preparation, especially when the initial glucose concentration ranged from 60 to 80 g L−1. Those results also demonstrated that APP technology can be used to enhance xanthan yields.

Keywords

Xanthan gum Solid-state fermentation Inert support Air pressure pulsation Xanthomonas campestris 

Notes

Acknowledgements

This research received financial support from the Important National Basic Research Program of China (2004CB719700) and the National Key Project of Scientific and Technical Supporting Programs funded by the Ministry of Science & Technology of China during the 11th Five-year Plan Period (2007BAD39B01).

References

  1. 1.
    Born, K., Langendorff, V. & Boulenguer, P. (2005). in Biotechnology of Biopolymer, vol. 1: Xanthan, Steinbuchel, A. & Doi, Y. (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 535–573.Google Scholar
  2. 2.
    Psomas, S. K., Liakopoulou-Kyriakides, M., & Kyriakidis, D. A. (2007). Biochem. Eng. J., 35, 273–280.CrossRefGoogle Scholar
  3. 3.
    Faria, S., Vieira, P. A., Resende, M. M., França, F. P., & Cardoso, V. L. (2009). Applied Biochemistry and Biotechnology, 156, 1–14.CrossRefGoogle Scholar
  4. 4.
    Kessler, W. R., Popovic, M. K., & Robinson, C. W. (1993). Can. J. Chem. Eng., 71, 101–106.CrossRefGoogle Scholar
  5. 5.
    Amanullah, A., Tuttiett, B., & Nienow, A. W. (1998). Biotechnology and Bioengineering, 57, 198–210.CrossRefGoogle Scholar
  6. 6.
    Peters, H. U., Suh, I. S., Schumpe, A., & Deckwer, W. D. (1992). Can. J. Chem. Eng., 70, 742–750.CrossRefGoogle Scholar
  7. 7.
    Kuttuva, S. G., Sundararajan, A., & Ju, L. K. (1998). Dispersion Sci. Technol., 19, 1003–1029.Google Scholar
  8. 8.
    Lo, Y. M., Hsu, C. H., Yang, S. T., & Min, D. B. (2001). Bioprocess Biosyst. Eng., 24, 187–193.Google Scholar
  9. 9.
    Ooijkaas, L. P., Weber, F. J., Buitelaar, R. M., Tramper, J., & Rinzema, A. (2000). Trends in Biotechnology, 18, 356–360.CrossRefGoogle Scholar
  10. 10.
    Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Biochem. Eng. J., 44, 13–18.CrossRefGoogle Scholar
  11. 11.
    Pandey, A., Soccol, C. R., & Larroche, C. (2008). in: Current Developments in Solid-state Fermentation. Delhi: N. K. Muraleedharan for Asiatech Publishers Inc.CrossRefGoogle Scholar
  12. 12.
    Viniegra-Gonzalez, G., Favela-Torres, E., Aguilar, C. N., Romero-Gomez, S. U., Diaz-Godinez, G., & Augur, C. (2003). Biochem. Eng. J., 13, 157–167.CrossRefGoogle Scholar
  13. 13.
    Xia, L. M., & Cen, P. L. (1999). Process Biochem., 34, 909–912.CrossRefGoogle Scholar
  14. 14.
    Tsao, G. T., Xia, L. M., Cao, N. J., & Gong, C. S. (2000). Applied Biochemistry and Biotechnology, 84, 743–749.CrossRefGoogle Scholar
  15. 15.
    Sun, S. Y., & Xu, Y. (2008). Process Biochem., 43, 219–224.CrossRefGoogle Scholar
  16. 16.
    Singh, O. V., Jain, R. K., & Singh, R. P. (2003). Journal of Chemical Technology and Biotechnology, 78, 208–212.CrossRefGoogle Scholar
  17. 17.
    Ellaiah, P., Srinivasulu, B., & Adinarayana, K. (2004). Process Biochem., 39, 529–534.CrossRefGoogle Scholar
  18. 18.
    Stredansky, M., & Conti, E. (1999). Process Biochem., 34, 581–587.CrossRefGoogle Scholar
  19. 19.
    John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Letters in Applied Microbiology, 44, 582–587.CrossRefGoogle Scholar
  20. 20.
    Tovar-Castro, L., García-Garibay, M., & Saucedo-Castañeda, G. (2008). Applied Biochemistry and Biotechnology, 151, 610–617.CrossRefGoogle Scholar
  21. 21.
    Gelmi, C., Perez-Correa, R., Gonzalez, M., & Agosin, E. (2000). Process Biochem., 35, 1227–1233.CrossRefGoogle Scholar
  22. 22.
    Xu, F. J., Chen, H. Z., & Li, Z. H. (2002). Enzyme Microb Technol., 30, 45–48.CrossRefGoogle Scholar
  23. 23.
    Chen, H. Z., Xu, F. J., Tian, Z. H., & Li, Z. H. (2002). Biosci. Bioeng., 93, 211–214.CrossRefGoogle Scholar
  24. 24.
    Zhang, A. J., Chen, H. Z., & Li, Z. H. (2005). Process Biochem., 40, 1547–1551.CrossRefGoogle Scholar
  25. 25.
    Tsao, G. T., Gong, C. S., & Cao, N. J. (2000). Applied Biochemistry and Biotechnology, 84, 505–524.CrossRefGoogle Scholar
  26. 26.
    Zeng, W., & Chen, H. Z. (2009). Bioresource Technology, 100, 1371–1375.CrossRefGoogle Scholar
  27. 27.
    Yang, X. M., Huang, T., & Tsao, G. T. (2002). Applied Biochemistry and Biotechnology, 98, 599–610.CrossRefGoogle Scholar
  28. 28.
    Zhang, Z. G. & Chen, H. Z. (2009). Appl. Biochem. Biotechnol. (in press)Google Scholar
  29. 29.
    Liu, X. F., & Wang, X. Y. (1993). Acta Microbiol. Sinica., 33, 40–47.Google Scholar
  30. 30.
    Chen, H. Z., Xu, J., & Li, Z. H. (2005). Biochem. Eng. J., 23, 117–122.CrossRefGoogle Scholar
  31. 31.
    Hsu, C. H., & Lo, Y. M. (2003). Process Biochem., 38, 1617–1625.CrossRefGoogle Scholar
  32. 32.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  33. 33.
    Viniegra-González, G., & Favela-Torres, E. (2006). Food Technol Biotechnol., 44, 397–406.Google Scholar
  34. 34.
    Amanullah, A., Serrano-Carreon, L., Castro, B., Galindo, E., & Nienow, A. W. (1998). Biotechnology and Bioengineering, 57, 95–108.CrossRefGoogle Scholar
  35. 35.
    Amanullah, A., Satti, S., & Nienow, A. W. (1998). Biochnol. Prog., 14, 265–269.CrossRefGoogle Scholar
  36. 36.
    Funahashi, H., Yoshida, T., & Taguchi, H. (1987). Journal of Ferment. Technology, 65, 606–606.Google Scholar
  37. 37.
    García-Ochoa, F., Castro, G. E., & Santos, V. E. (2000). Enzyme Microb Tech., 27, 680–690.CrossRefGoogle Scholar
  38. 38.
    Li, H. Q., & Chen, H. Z. (2005). Chinese Journal of Biotechnology, 21, 440–445.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.National Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic China

Personalised recommendations