Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2166–2176 | Cite as

Using Multi-parameter Flow Cytometry to Monitor the Yeast Rhodotorula glutinis CCMI 145 Batch Growth and Oil Production Towards Biodiesel

  • Teresa Lopes da SilvaEmail author
  • Daniela Feijão
  • Alberto Reis
Article

Abstract

Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Rhodotorula glutinis CCMI 145 cells grown in shake flasks. Changes in the side light scatter and forward light scatter were detected during the yeast batch growth, which were attributed to the different yeast growth phases. A progressive increase in the proportion of cells stained with PI (cells with permeabilized cytoplasmic membrane) was observed during the yeast growth, attaining 79% at the end of the fermentation. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional gravimetric lipid analysis was found for this yeast, making this method a suitable and quick technique for the screening of yeast strains for lipid production and optimization of biofuel production bioprocesses. Medium growth optimization for enhancement of the yeast oil production is now in progress.

Keywords

Lipids Rhodotorula glutinis Flow cytometry Nile red Light scatter 

References

  1. 1.
    Li, Q., Du, W., & Liu, D. (2008). Applied Microbiology and Biotechnology, 80, 749–758.CrossRefGoogle Scholar
  2. 2.
    Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  3. 3.
    Easterling, E. M., French, W. T., Hernandez, R., & Lich, M. (2009). Bioresource Technology, 199, 356–361.CrossRefGoogle Scholar
  4. 4.
    Dai, C., Tao, J., Xie, F., Dai, Y., & Zhao, M. (2007). Africana Journal of Biotechnology, 6, 2130–2134.Google Scholar
  5. 5.
    Xue, F., Miao, J., Zhang, X., Luo, H., & Tan, T. (2008). Bioresource Technology, 99, 5923–5927.CrossRefGoogle Scholar
  6. 6.
    Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Journal of Microbiological Methods, 68, 639–642.CrossRefGoogle Scholar
  7. 7.
    Tornabene, T. G. (1983). Enzyme and Microbial Technology, 5, 435–440.CrossRefGoogle Scholar
  8. 8.
    Kimura, K., Yamaoka, M., & Kamisaka, Y. (2004). Journal of Microbiological Methods, 56, 331–338.CrossRefGoogle Scholar
  9. 9.
    de la Jara, A., Medonza, H., Martel, A., Molina, C., Nordströn, L., de la Rosa, V., et al. (2003). Journal of Applied Phycology, 15, 433–438.CrossRefGoogle Scholar
  10. 10.
    Lopes da Silva, T., Santos, C. A., & Reis, A. (2009). Biotechnology and Bioprocess Engineering, 14, 330–337.CrossRefGoogle Scholar
  11. 11.
    Hewitt, C. J., & Nebe-Von-Caron, G. (2001). Cytometry, 44, 179–187.CrossRefGoogle Scholar
  12. 12.
    Hewitt, C. J., & Nebe-Von-Caron, G. (2004). Advances in Biochemical Engineering/Biotechnology, 89, 197–223.Google Scholar
  13. 13.
    Abe, F. (1998). Journal of Microbiological Methods, 79, 178–183.Google Scholar
  14. 14.
    Attfield, P. V., Kletsas, S., Veal, D. A., van Rooijen, R., & Bell, P. J. L. (2000). Journal of Applied Microbiology, 89, 207–214.CrossRefGoogle Scholar
  15. 15.
    Breeuwer, P., Drocourt, J. L., Brunschoten, N., Zwietering, M. H., Rombouts, F. M., & Abee, T. (1995). Applied and Environmental Microbiology, 61, 1614–1619.Google Scholar
  16. 16.
    Müller, S., & Lösche, A. (2004). Journal of Food Engineering, 63, 375–381.CrossRefGoogle Scholar
  17. 17.
    Raschke, D., & Knorr, D. (2009). Journal of Microbiological Methods, 79, 178–183.CrossRefGoogle Scholar
  18. 18.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  19. 19.
    Xiong, W., Xiufeng, L., Xiang, J., & Wu, Q. (2008). Applied Microbiology and Biotechnology, 78, 29–36.CrossRefGoogle Scholar
  20. 20.
    Yeung, P. K. K., & Wong, J. T. Y. (2003). Protoplasma, 220, 173–178.CrossRefGoogle Scholar
  21. 21.
    Premazzi, G., Buonaccorsi, G., & Zilio, P. (1989). Water Research, 23, 431–442.CrossRefGoogle Scholar
  22. 22.
    Stauber, J. L., Franklin, N. M., & Adams, M. S. (2002). TIBTECH, 20, 141–143.Google Scholar
  23. 23.
    Ludovico, P., Sansonety, F., & Corte-Real, M. (2001). Microbiology, 147, 3335–3343.Google Scholar
  24. 24.
    Choi, S. Y., Ryu, D. D., & Rhee, J. S. (1982). Biotechnology and Bioengineering, 24, 1165–1172.CrossRefGoogle Scholar
  25. 25.
    Cocucci, M. C., Belloni, G., & Gianani, L. (1975). Archives of Microbiology, 105, 17–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Teresa Lopes da Silva
    • 1
    Email author
  • Daniela Feijão
    • 1
  • Alberto Reis
    • 1
  1. 1.Laboratório Nacional de Energia e Geologia (LNEG)Unidade de BioenergiaLisboaPortugal

Personalised recommendations