Skip to main content
Log in

Using Multi-parameter Flow Cytometry to Monitor the Yeast Rhodotorula glutinis CCMI 145 Batch Growth and Oil Production Towards Biodiesel

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Rhodotorula glutinis CCMI 145 cells grown in shake flasks. Changes in the side light scatter and forward light scatter were detected during the yeast batch growth, which were attributed to the different yeast growth phases. A progressive increase in the proportion of cells stained with PI (cells with permeabilized cytoplasmic membrane) was observed during the yeast growth, attaining 79% at the end of the fermentation. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional gravimetric lipid analysis was found for this yeast, making this method a suitable and quick technique for the screening of yeast strains for lipid production and optimization of biofuel production bioprocesses. Medium growth optimization for enhancement of the yeast oil production is now in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, Q., Du, W., & Liu, D. (2008). Applied Microbiology and Biotechnology, 80, 749–758.

    Article  CAS  Google Scholar 

  2. Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  3. Easterling, E. M., French, W. T., Hernandez, R., & Lich, M. (2009). Bioresource Technology, 199, 356–361.

    Article  CAS  Google Scholar 

  4. Dai, C., Tao, J., Xie, F., Dai, Y., & Zhao, M. (2007). Africana Journal of Biotechnology, 6, 2130–2134.

    CAS  Google Scholar 

  5. Xue, F., Miao, J., Zhang, X., Luo, H., & Tan, T. (2008). Bioresource Technology, 99, 5923–5927.

    Article  CAS  Google Scholar 

  6. Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Journal of Microbiological Methods, 68, 639–642.

    Article  CAS  Google Scholar 

  7. Tornabene, T. G. (1983). Enzyme and Microbial Technology, 5, 435–440.

    Article  CAS  Google Scholar 

  8. Kimura, K., Yamaoka, M., & Kamisaka, Y. (2004). Journal of Microbiological Methods, 56, 331–338.

    Article  CAS  Google Scholar 

  9. de la Jara, A., Medonza, H., Martel, A., Molina, C., Nordströn, L., de la Rosa, V., et al. (2003). Journal of Applied Phycology, 15, 433–438.

    Article  Google Scholar 

  10. Lopes da Silva, T., Santos, C. A., & Reis, A. (2009). Biotechnology and Bioprocess Engineering, 14, 330–337.

    Article  CAS  Google Scholar 

  11. Hewitt, C. J., & Nebe-Von-Caron, G. (2001). Cytometry, 44, 179–187.

    Article  CAS  Google Scholar 

  12. Hewitt, C. J., & Nebe-Von-Caron, G. (2004). Advances in Biochemical Engineering/Biotechnology, 89, 197–223.

    CAS  Google Scholar 

  13. Abe, F. (1998). Journal of Microbiological Methods, 79, 178–183.

    Google Scholar 

  14. Attfield, P. V., Kletsas, S., Veal, D. A., van Rooijen, R., & Bell, P. J. L. (2000). Journal of Applied Microbiology, 89, 207–214.

    Article  CAS  Google Scholar 

  15. Breeuwer, P., Drocourt, J. L., Brunschoten, N., Zwietering, M. H., Rombouts, F. M., & Abee, T. (1995). Applied and Environmental Microbiology, 61, 1614–1619.

    CAS  Google Scholar 

  16. Müller, S., & Lösche, A. (2004). Journal of Food Engineering, 63, 375–381.

    Article  Google Scholar 

  17. Raschke, D., & Knorr, D. (2009). Journal of Microbiological Methods, 79, 178–183.

    Article  CAS  Google Scholar 

  18. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  19. Xiong, W., Xiufeng, L., Xiang, J., & Wu, Q. (2008). Applied Microbiology and Biotechnology, 78, 29–36.

    Article  CAS  Google Scholar 

  20. Yeung, P. K. K., & Wong, J. T. Y. (2003). Protoplasma, 220, 173–178.

    Article  CAS  Google Scholar 

  21. Premazzi, G., Buonaccorsi, G., & Zilio, P. (1989). Water Research, 23, 431–442.

    Article  CAS  Google Scholar 

  22. Stauber, J. L., Franklin, N. M., & Adams, M. S. (2002). TIBTECH, 20, 141–143.

    CAS  Google Scholar 

  23. Ludovico, P., Sansonety, F., & Corte-Real, M. (2001). Microbiology, 147, 3335–3343.

    CAS  Google Scholar 

  24. Choi, S. Y., Ryu, D. D., & Rhee, J. S. (1982). Biotechnology and Bioengineering, 24, 1165–1172.

    Article  CAS  Google Scholar 

  25. Cocucci, M. C., Belloni, G., & Gianani, L. (1975). Archives of Microbiology, 105, 17–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, T.L., Feijão, D. & Reis, A. Using Multi-parameter Flow Cytometry to Monitor the Yeast Rhodotorula glutinis CCMI 145 Batch Growth and Oil Production Towards Biodiesel. Appl Biochem Biotechnol 162, 2166–2176 (2010). https://doi.org/10.1007/s12010-010-8991-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8991-3

Keywords

Navigation