Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2149–2156 | Cite as

Application of a pH Feedback-Controlled Substrate Feeding Method in Lactic Acid Production

  • Yong Zhang
  • Wei CongEmail author
  • ShaoYuan Shi


Substrate concentration in lactic acid fermentation broth could not be controlled well by traditional feeding methods, including constant, intermittent, and exponential feeding methods, in fed-batch experiments. A simple feedback feeding method based on pH was proposed to control pH and substrate concentration synchronously to enhance lactic acid production in fed-batch culture. As the linear relationship between the consumption amounts of alkali and that of substrate was concluded during lactic acid fermentation, the alkali and substrate in the feeding broth were mixed together proportionally. Thus, the concentration of substrate could be controlled through the adjustment of pH automatically. In the fed-batch lactic acid fermentation with Lactobacillus lactis-11 by this method, the residual glucose concentration in fermentation broth was controlled between 4.1 and 4.9 g L−1, and the highest concentration of lactic acid, maximum cell dry weight, volumetric productivity of lactic acid, and yield were 96.3 g L−1, 4.7 g L−1, 1.9 g L−1 h−1, and 0.99 g lactic acid per gram of glucose, respectively, compared to 82.7 g L−1, 3.31 g L−1, 1.7 g L−1 h−1, and 0.92 g lactic acid per gram of glucose in batch culture. This feeding method was simple and easily operated and could be feasible for industrial lactic acid production in the future.


Lactic acid Fed-batch Lactobacillus lactis-11 Ammonium hydroxide pH feedback 



This research was supported by the National High-Tech Research and Development Program (863 Program, P.R. China, 2007AA10Z360).


  1. 1.
    Huang, L. P., Jin, B., & Paul, L. (2005). Bioprocess and Biosystems Engineering, 27, 229–238.CrossRefGoogle Scholar
  2. 2.
    Datta, R., Tsai, S. P., Bonsignor, P., Moon, S., & Frank, J. (1995). FEMS Microbiology Reviews, 16, 221–231.CrossRefGoogle Scholar
  3. 3.
    Mulligan, C. N., Safi, B. F., & Groleau, D. (1991). Biotechnology and Bioengineering, 38, 1173–1181.CrossRefGoogle Scholar
  4. 4.
    Ataei, S. A., & Vasheghani-Farahani, E. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 1229–1233.CrossRefGoogle Scholar
  5. 5.
    Wang, Q., Cheng, G., Sun, X., & Jin, B. (2006). Process Biochemistry, 41, 152–158.CrossRefGoogle Scholar
  6. 6.
    Spiricheva, O. V., Sen’ko, O. V., Veremeenko, D. V., & Efremenko, E. N. (2007). Theoretical Foundations of Chemical Engineering, 41(2), 150–153.CrossRefGoogle Scholar
  7. 7.
    John, R. P., Nampoothiri, K. M., & Pandey, A. (2006). Biotechnology Letters, 28(22), 1823–1826.CrossRefGoogle Scholar
  8. 8.
    Linko, Y. Y., & Javanainen, P. (1996). Enzyme and Microbial Technology, 19, 118–123.CrossRefGoogle Scholar
  9. 9.
    Anuradha, R., Suresh, A. K., & Venkatesh, K. V. (1999). Process Biochemistry, 35(3–4), 367–375.CrossRefGoogle Scholar
  10. 10.
    Petrov, K., Urshev, Z., & Petrova, P. (2008). Food Microbiology, 25, 550–557.CrossRefGoogle Scholar
  11. 11.
    Vishnu, C., Seenayya, G., & Reddy, G. (2000). Bioprocess and Biosystems Engineering, 23, 155–158.Google Scholar
  12. 12.
    Vishnu, C., Seenayya, G., & Reddy, G. (2002). World Journal of Microbiology & Biotechnology, 18, 429–433.CrossRefGoogle Scholar
  13. 13.
    Altaf, M. D., Naveena, B. J., Venkateshwar, M., Kumar, E. V., & Reddy, G. (2006). Process Biochemistry, 41, 465–472.CrossRefGoogle Scholar
  14. 14.
    Okano, K., Zhang, Q., Shinkawa, S., Yoshida, S., Tanaka, K., Fukuda, H., et al. (2009). Applied and Environmental Microbiology, 75(2), 462–467.CrossRefGoogle Scholar
  15. 15.
    Bai, D. M., Yan, Z. H., Wei, Q., Zhao, X. M., Li, X. G., & Xu, S. M. (2004). Biochemical Engineering Journal, 19, 47–51.CrossRefGoogle Scholar
  16. 16.
    Mu, W., Liu, F., Jia, J., Chen, C., Zhang, T., & Jiang, B. (2009). Bioresource Technology, 100(21), 5226–5229.CrossRefGoogle Scholar
  17. 17.
    Ding, S. F., & Tan, T. W. (2006). Process Biochemistry, 41, 1451–1454.CrossRefGoogle Scholar
  18. 18.
    Mass, R. H. W., Bakker, R. R., Jansen, M. L. A., Visser, D., De Jong, E., Eggink, G., et al. (2008). Applied Microbiology and Biotechnology, 78(5), 751–758.CrossRefGoogle Scholar
  19. 19.
    Tsuge, T., Tanaka, K., & Ishizaki, A. (2001). Journal of Bioscience and Bioengineering, 91(6), 545–550.CrossRefGoogle Scholar
  20. 20.
    Lv, W. H., Cong, W., & Cai, Z. L. (2004). Biotechnology Letters, 26, 1713–1716.CrossRefGoogle Scholar
  21. 21.
    Cong, W., Zhang, Y., Liu, H., Wu, X., & Yang, P. B. (2008). Patent of China, CN200810239007.3.Google Scholar
  22. 22.
    Deman, J. C., Rogosa, M., & Sharpe, M. E. (1960). The Journal of Applied Bacteriology, 23, 130–135.Google Scholar
  23. 23.
    Bai, D. M., Jia, M. Z., & Zhao, X. M. (2003). Chen Eng Sci, 58, 785–791.CrossRefGoogle Scholar
  24. 24.
    Bai, D. M., Wei, Q., Yan, Z. H., Zhao, X. M., Li, X. G., & Xu, S. M. (2003). Biotechnology Letters, 25, 1833–1835.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.National Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations