Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 8, pp 2136–2148 | Cite as

A Novel Cold-Active and Alkali-Stable β-Glucosidase Gene Isolated from the Marine Bacterium Martelella mediterranea

  • Xiaoxia Mao
  • Yuzhi Hong
  • Zongze Shao
  • Yan Zhao
  • Ziduo LiuEmail author
Article

Abstract

A β-glucosidase gene designated gluc3m was cloned through construction of a genomic library of Martelella mediterranea 2928. The gluc3m consisted of 2,496 bp and encoded a peptide of 832 amino acids that shared the greatest amino acid similarity (59%) with a β-glucosidase of family 3 glycoside hydrolase from Agrobacterium radiobacter K84. The optimum reaction temperature and pH of Gluc3M were 45 °C and 8.0, respectively. The K m and V max for p-nitrophenyl-β-d-glucopyranoside were 0.18 mg/ml and 196.08 µmol/min/mg enzyme, respectively. Gluc3M was found to be highly alkali stable, retaining 80% of its maximum enzymatic activity after treatment with pH 11.0 buffers for 24 h. Furthermore, the activity of Gluc3M improved remarkably in the presence of univalent metal ions, whereas it was inhibited in the presence of divalent ions. Gluc3M also exhibited significant activities toward various substrates including pNPGlu, pNPGal, salicin, and konjac powder. It is important to note that Gluc3M is a cold-active enzyme that showed over 50% of the maximum enzymatic activity at 4 °C. SWISS-MODEL revealed that the amino acids near the conserved domain SDW of Gluc3M contributed to the cold-active ability. Based on these characteristics, Gluc3M has the potential for use in additional studies and for industrial applications.

Keywords

β-Glucosidase Martelella mediterranea Glycosyl hydrolase family 3 Cold active Alkaline stability 

Notes

Acknowledgments

We thank Dr. Qifa Zhang for support and for helpful discussions. This study was supported by grants from the National Natural Science Foundation of China (30570057 and 30770021) and the 111 project (B07041).

References

  1. 1.
    Voorhorst, W. G., Eggen, R. I., Luesink, E. J., & De Vos, W. M. (1995). Journal of Bacteriology, 177, 7105–7111.Google Scholar
  2. 2.
    Romero, M. D., Aguado, J., González, L., & Ladero, M. (1999). Enzyme and Microbial Technology, 25, 244–250.CrossRefGoogle Scholar
  3. 3.
    Planas, A. (2000). Biochimica et Biophysica Acta, 1543, 361–382.Google Scholar
  4. 4.
    Hers, H. G. (1963). The Biochemical Journal, 86, 11–16.Google Scholar
  5. 5.
    Gueguen, Y., Chemardin, P., Pien, S., Arnaud, A., & Galzy, P. (1997). Journal of Biotechnology, 55, 151–156.CrossRefGoogle Scholar
  6. 6.
    Feller, G., & Gerday, C. (2003). Nature Reviews. Microbiology, 1, 200–208.CrossRefGoogle Scholar
  7. 7.
    Zhao, X., Gao, L., Wang, J., Bi, H., Gao, J., Du, X., et al. (2009). Process Biochemistry, 44, 612–618.CrossRefGoogle Scholar
  8. 8.
    Meng, X., Shao, Z., Hong, Y., Lin, L., Li, C., & Liu, Z. (2009). Journal of Microbiology and Biotechnology, 19, 1077–1884.Google Scholar
  9. 9.
    Li, C. J., Hong, Y., Shao, Z., Lin, L., Huang, X., Liu, P., et al. (2009). Journal of Microbiology and Biotechnology, 19, 873–880.CrossRefGoogle Scholar
  10. 10.
    Henrissat, B. (1991). The Biochemical Journal, 280, 309–316.Google Scholar
  11. 11.
    Rivas, R., Sanchez, M. S., Mateos, P. F., Martinez, M. E., & Velazquez, E. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 955–959.CrossRefGoogle Scholar
  12. 12.
    Keresztessy, Z., Hughes, J., Kiss, L., & Hughes, M. A. (1996). The Biochemical Journal, 314, 41–47.Google Scholar
  13. 13.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  14. 14.
    Herr, D., Baumer, F., & Dellweg, H. (1978). Applied Microbiology and Biotechnology, 5, 29–36.CrossRefGoogle Scholar
  15. 15.
    Cai, Y. J., Buswell, J. A., & Chang, S. T. (1998). Enzyme and Microbial Technology, 22, 122–129.CrossRefGoogle Scholar
  16. 16.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  17. 17.
    Dodd, D., Kocherginskaya, S. A., Spies, M. A., Beery, K. E., Abbas, C. A., Mackie, R. I., et al. (2009). Journal of Bacteriology, 191, 3328–3338.CrossRefGoogle Scholar
  18. 18.
    Campbell, J. A., Davies, G. J., Bulone, V., & Henrissat, B. (1997). The Biochemical Journal, 326, 929–939.Google Scholar
  19. 19.
    Helland, R., Larsen, R. L., & Ásgeirsson, B. (2009). Biochimica et Biophysica Acta, 1794, 297–308.Google Scholar
  20. 20.
    Li, Y. K., Chir, J., & Chen, F. Y. (2001). The Biochemical Journal, 355, 835–840.CrossRefGoogle Scholar
  21. 21.
    Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). Bioinformatics, 22, 195–201.CrossRefGoogle Scholar
  22. 22.
    Bauvois, C., Jacquamet, L., Huston, A. L., Borel, F., Feller, G., & Ferrer, J. L. (2008). The Journal of Biological Chemistry, 283, 23315–23325.CrossRefGoogle Scholar
  23. 23.
    Huston, A. L., Methe, B., & Deming, J. W. (2004). Applied and Environmental Microbiology, 70, 3321–3328.CrossRefGoogle Scholar
  24. 24.
    Bauer, M. W., Bylina, E. J., Swanson, R. V., & Kelly, R. M. (1996). The Journal of Biological Chemistry, 271, 23749–23755.CrossRefGoogle Scholar
  25. 25.
    Brenchley, J. E. (1996). Journal of Industrial Microbiology & Biotechnology, 17, 432–437.CrossRefGoogle Scholar
  26. 26.
    Morita, Y., Nakamura, T., Hasan, Q., Murakami, Y., Yokoyama, K., & Tamiya, E. (1997). Journal of the American Oil Chemists' Society, 74, 441–444.CrossRefGoogle Scholar
  27. 27.
    Basha, S., Rai, P., Poon, V., Saraph, A., Gujraty, K., Go, M. Y., et al. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 13509–13513.CrossRefGoogle Scholar
  28. 28.
    Sveinbjornsson, J., Murphy, M., & Uden P. (2007). Animal Feed Science and Technology, 132, 171–185.CrossRefGoogle Scholar
  29. 29.
    Hayashi, S., Sako, S., Yokoi, H., Takasaki, Y., & Imada, K. (1999). Journal of Industrial Microbiology & Biotechnology, 22, 160–163.CrossRefGoogle Scholar
  30. 30.
    Gueguen, Y., Chemardin, P., Labrot, P., Arnaud, A., & Galzy, P. (1997). Journal of Applied Microbiology, 82, 469–476.CrossRefGoogle Scholar
  31. 31.
    Singh, A., & Hayashi, K. (1995). Journal of Applied Biological Chemistry, 270, 21928–21933.Google Scholar
  32. 32.
    Mosavi, L. K., & Peng, Z. (2003). Protein Engineering, Design & Selection, 16, 739–745.CrossRefGoogle Scholar
  33. 33.
    Shipkowski, S., & Brenchley, J. E. (2005). Applied and Environmental Microbiology, 71, 4225–4232.CrossRefGoogle Scholar
  34. 34.
    Lin, T. C., & Chen, C. (2004). Process Biochemistry, 39, 1103–1109.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaoxia Mao
    • 1
  • Yuzhi Hong
    • 2
  • Zongze Shao
    • 3
  • Yan Zhao
    • 1
  • Ziduo Liu
    • 1
    Email author
  1. 1.State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  3. 3.Key Laboratory of Marine Biogenetic ResourcesThe Third Institute of Oceanography, State of Oceanic AdministrationXiamenPeople’s Republic of China

Personalised recommendations