Skip to main content
Log in

Effects of Surfactant and Salt Species in Reverse Micellar Forward Extraction Efficiency of Isoflavones with Enriched Protein from Soy Flour

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Suitability of reverse micelles of anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT) and sodium dodecyl sulfate (SDS), cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and nonionic surfactant polyoxyethylene p-t-octylphenol (TritonX-100) in organic solvent isooctane for extraction of soy isoflavone-enriching proteins was investigated. The results showed that the order of combined isoflavone contents was SDS>CTAB>Triton X-100>AOT, while the order of protein recovery was SDS>AOT>TritonX-100>CTAB. As compared with ACN-HCl extraction, the total amount of isoflavones was lower than reverse micellar extraction. Ion strength was one of the important conditions to control extraction of isoflavone-enriching proteins with AOT reversed micelles. For the six salt systems, KNO3, KCl, MgCl2, CaCl2, NaCl, and Na2SO4, extracted fraction of isoflavone-enriching proteins was measured. Salt solutions greatly influenced the extraction efficiency of isoflavones in an order of KNO3>MgCl2>CaCl2>KCl>NaCl>Na2SO4, while protein in an order of MgCl2>CaCl2>NaCl>KNO3>Na2SO4>KCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steinberg, F. M., Guthrie, N. L., Villablanca, A. C., Kumar, K., & Murray, M. J. (2003). Soy protein with isoflavones has favorable effects on endothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women. The American Journal of Clinical Nutrition, 78, 123–310.

    CAS  Google Scholar 

  2. Coward, L., Smith, M., Kirk, M., & Barnes, S. (1998). Chemical modification of isoflavones in soyfoods during cooking and processing. The American Journal of Clinical Nutrition, 68, 1486S–1491S.

    CAS  Google Scholar 

  3. Jose, L. P., Tarja, N., & Herman, A. (2004). A simplified HPLC method for total isoflavones in soy products. Food Chemistry, 87, 297–305.

    Article  Google Scholar 

  4. Rostagno, M. A., Palma, M., & Barroso, C. G. (2003). Ultrasound-assisted extraction of soy isoflavones. Journal of Chromatography. A, 1012, 119–128.

    Article  CAS  Google Scholar 

  5. Wang, H., & Murphy, P. A. (1994). Mass balance study of isoflavones during soybean processing. Journal of Agricultural and Food Chemistry, 44, 2377–2383.

    Article  Google Scholar 

  6. Mauricio, A. R., Julio, M. A. A., & Delcio, S. (2002). Supercrittical fluid extraction of isoflavones from soybean flour. Food Chemistry, 78, 111–117.

    Article  Google Scholar 

  7. Luisi, P. L., Giomini, M., & Pileni, R. (1988). Reverse micelles as hosts for protein and small molecules. Biochimical et Biophysica Acta, 947, 209–246.

    CAS  Google Scholar 

  8. Zhu, K. X., Sun, X. H., & Zhou, H. M. (2009). Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. Journal of Cereal Science, 50(2), 266–271.

    Article  CAS  Google Scholar 

  9. Zhao, X. H., Li, Y. M., He, X. W., Zhong, N. J., Xu, Z. B., & Yang, L. S. (2010). Study of the factors affecting the extraction of soybean protein by reverse micelles. Molecular Biology Reports, 37(2), 669–675.

    Article  CAS  Google Scholar 

  10. Sun, X. H., Zhu, K. X., & Zhou, H. M. (2009). Optimization of a novel backward extraction of defatted wheat germ protein from reverse micelles. Innovative Food Science & Emerging Technology, 10(3), 328–333.

    Article  CAS  Google Scholar 

  11. Zhao, X. Y., Chen, F. S., Chen, J. Q., Gai, G. S., Xue, W. T., & Lee, L. T. (2008). Effects of extraction temperature, ionic strength and contact time on the backward extraction of soy protein and isoflavones from AOT reverse micelles. Journal of the Science of Food and Agriculture, 88, 590–596.

    Article  CAS  Google Scholar 

  12. Sanchez, F. A., & Garcia, C. F. (1994). Biocatalysis in reverse self-assembling structures: reverse micelles and reverse vesicles. Enzyme and Microbial Technology, 16, 409–415.

    Article  Google Scholar 

  13. Kunz, W. (2010). Specific ion effects in colloidal and biological systems. Current Opinion in Colloid & Interface Science, 15(1–2), 34–39.

    Article  CAS  Google Scholar 

  14. Kunz, W., Lo Nostro, P., & Ninham, B. W. (2004). The present state of affairs with Hofffieister effects. Current Opinion in Colloid & Interface Science, 9(1–2), 1–18.

    Article  CAS  Google Scholar 

  15. Wu, X. H., Lei, Z. G., Li, Q. S., Zhu, J. Q., & Chen, B. H. (2010). Liquid-liquid extraction of low-concentration aniline from aqueous solutions with salts. Industrial & Engineering Chemistry Research, 49(6), 2581–2588.

    Article  CAS  Google Scholar 

  16. Li, C. X., Han, J., Wang, Y., Yan, Y. S., Pan, J. M., Xu, X. H., et al. (2010). Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts. Industrial & Engineering Chemistry Research, 55(3), 1087–1092.

    CAS  Google Scholar 

  17. Kempe, H., & Kempe, M. (2010). Influence of salt ions on binding to molecularly imprinted polymers. Analytical and Bioanalytical Chemistry, 396(4), 1599–1606.

    Article  CAS  Google Scholar 

  18. Leser, M. E., & Luisi, P. L. (1989). The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal. Biotechnology and Bioengineering, 34, 1140–1146.

    Article  CAS  Google Scholar 

  19. Zhao, X. Y., Chen, F. S., Xue, W. T., & Lee, L. T. (2008). FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocolloids, 22, 568–575.

    Article  CAS  Google Scholar 

  20. Zhao, X. Y., Chen, F. S., Chen, J. Q., Gai, G. S., Xue, W. T., & Li, L. T. (2008). Effects of AOT reverse micelle on properties of soy globulins. Food Chemistry, 111, 599–605.

    Article  CAS  Google Scholar 

  21. Nishiki, T., Sato, I., Kataoka, T., & Kato, D. (1993). Partitioning behavior and enrichment of proteins with reversed micellar extraction: 1. Forward extraction of proteins from aqueous to reversed micellar phase. Biotechnology and Bioengineering, 42, 596–600.

    Article  CAS  Google Scholar 

  22. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartener, F. H., Provenzano, M. D., et al. (1985). Measurement of protein using bichinchoninic acid. Analytical Biochemistry, 150, 76–85.

    Article  CAS  Google Scholar 

  23. Jackson, C. J. C., Dini, J. P., Lavandier, C., Rupasinghe, H. P. V., Faulkner, H., Poysa, V., et al. (2002). Effect of processing on the content and composition of isoflavones during manufacturing of soy beverages and tofu. Process Biochemistry, 37, 1117–1123.

    Article  CAS  Google Scholar 

  24. Rajib, K. M., & Bidyut, K. B. (2005). Effect of NaCl and temperature onthe water solubilization behavior of AOT/noninoics mixed reverse micellar systems stabilized in IPM oil. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 255(2), 165–180.

    Google Scholar 

  25. Correa, N. M., Durantini, E. N., & Silber, J. J. (1998). Binding of nitrodiphenylamines to reverse micelles of AOT in n-hexane and carbon tetrachloride: solvent and substituent effects. Journal of Colloid and Interface Science, 208, 96–103.

    Article  CAS  Google Scholar 

  26. Seung, L. L., & Row, K. H. (2003). Estimation for retention factor of isoflavones in physico-chemical properties. Bulletin of the Korean Chemical Society, 24, 1265–1268.

    Article  Google Scholar 

  27. Murphy, P. A., Song, T. T., Buseman, G., Barua, K., Beecher, G. R., Trainer, D., et al. (1999). isoflavones in retail and institutional soy foods. Journal of Agricultra Food Chemistry, 47, 2697–2704.

    Article  CAS  Google Scholar 

  28. Matzke, S. F., Creagh, A. L., Haynes, A. C., Prausnitz, J. M., & Blanch, H. W. (1992). Mechanisms of protein solubilization in reverse micelles. Biotechnology and Bioengineering, 40, 91–102.

    Article  CAS  Google Scholar 

  29. Murphy, P. A., Barua, K., & Hauck, C. C. (2002). Solvent extraction selection in the determination of isoflavones in soy foods. Journal of Chromatography, 777, 129–138.

    Article  CAS  Google Scholar 

  30. Ronnie, B. G., Wolbert, R. H., Gijsbert, V., Henk, N., Matthijs, D., Klaas, V. R., et al. (1989). Protein transfer from an aqueous phase into reversed micelles the effect of protein size and charge distribution. European Journal of Biochemistry, 184, 627–633.

    Article  Google Scholar 

  31. Kinugasa, T., Kondo, A., Mouri, E., Ichikawa, S., Nakagawa, S., Nishii, Y., et al. (2003). Effects of ion species in aqueous phase on protein extraction into reversed micellar solution. Separation Science and Technology, 31, 251–259.

    CAS  Google Scholar 

  32. Lye, G. J., Asenjo, J. A., & Pyle, D. L. (1995). Extraction of lysozyme and ribonuclease-a using reverse micelles: limits to potein solubilization. Biotechnology and Bioengineering, 47, 509–519.

    Article  CAS  Google Scholar 

  33. Noh, K. H., & Imm, J. Y. (2005). One-step separation of lysozyme by reverse micelles formed by the cationic surfactant, cetyldimethylammonium Bromide. Food Chemistry, 93, 95–101.

    Article  CAS  Google Scholar 

  34. Barbosa, A. C. L., Lajolo, F. M., & Genovese, M. I. (2006). Influence of temperature, pH and ionic strength on the production of isoflavones-rich soy protein isolates. Food Chemistry, 98, 757–766.

    Article  Google Scholar 

Download references

Acknowledgement

Financial support of this work was by Fund of China Post-doctor Science (Grant No. 20080440388) and Project of Agriculture Scientific and Technological Achievement Transfer of China (Grant No.2009GB2C600198).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Zhao or Fangling Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Wei, Z., Du, F. et al. Effects of Surfactant and Salt Species in Reverse Micellar Forward Extraction Efficiency of Isoflavones with Enriched Protein from Soy Flour. Appl Biochem Biotechnol 162, 2087–2097 (2010). https://doi.org/10.1007/s12010-010-8984-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8984-2

Keywords

Navigation