Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 2049–2057 | Cite as

A Highly Thermostable Alkaline Cellulase-Free Xylanase from Thermoalkalophilic Bacillus sp. JB 99 Suitable for Paper and Pulp Industry: Purification and Characterization

  • Dengeti Shrinivas
  • Gunashekaran Savitha
  • Kumar Raviranjan
  • Gajanan Ramchandra NaikEmail author
Article

Abstract

A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0–10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K m and V max of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 µM min−1 mg−1, respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.

Keywords

Bacillus sp. JB 99 Thermoalkalophilic Xylanase Purification Glycosyl hydrolases 

Notes

Acknowledgments

The authors would like to thank the Council of Scientific and Industrial Research, New Delhi (Scheme no. 37/1297/07 EMR-II) for the financial support and providing Mr. D. Shrinivas the Junior Research Fellowship. The authors would also like to thank the National Facility for Protein Sequencing (Indian Institute of Technology, Mumbai) in carrying out protein sequencing work.

References

  1. 1.
    Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338. doi: 10.1007/s002530100704.CrossRefGoogle Scholar
  2. 2.
    Gessesse, A., & Mamo, G. (1999). Enzyme and Microbial Technology, 25, 68–72. doi: 10.1016/S0141-0229(99)00006-X.CrossRefGoogle Scholar
  3. 3.
    Takahashi, H., Nakai, R., & Nakamura, S. (2000). Biosci Biotechnol Biochem, 64, 887–890.CrossRefGoogle Scholar
  4. 4.
    Johnvesly, B., & Naik, G. R. (2001). Process Biochemistry, 37, 139–144. doi: 10.1016/S0032-9592(01)00191-1.CrossRefGoogle Scholar
  5. 5.
    Johnvesly, B., Virupakshi, S., Patil, G. N., Ramalingam, & Naik, G. R. (2002). J Microbiol Biotechnol, 12, 53–156.Google Scholar
  6. 6.
    Ratanakhanokchai, K., Kyu, K. L., & Tanticharoen, M. (1999). Appl Environ Microbiol, 65, 694–697.Google Scholar
  7. 7.
    Laemmli, U. K. (1970). Nature, 227, 680–686. doi: 10.1038/227680a0.CrossRefGoogle Scholar
  8. 8.
    Maalej, I., Belhaj, I., Masmoudi, N. F., & Belghith, H. (2009). Applied Biochemistry and Biotechnology, 158, 200–212. doi: 10.1007/s12010-008-8317-x.CrossRefGoogle Scholar
  9. 9.
    Monica, D., Castro, A., Castro, R. M., Andrade, C. M., & Pereira, N. (2004). Applied Biochemistry and Biotechnology, 115, 1–3. doi: 10.1385/ABAB:115:1-3:1003.Google Scholar
  10. 10.
    Chang, P., Tsai, W.-S., Tsai, C.-L., & Tseng, M.-J. (2004). Biochem Biophys Res Comms, 319, 1017–1025. doi: 10.1016/j.bbrc.2004.05.078.CrossRefGoogle Scholar
  11. 11.
    Sudan, R., & Bajaj, B. K. (2007). World J Microbiol Biotechnol, 23, 491–500. doi: 10.1007/s11274-006-9251-0.CrossRefGoogle Scholar
  12. 12.
    Nakamura, S., Wakabayashi, K., & Horikoshi, K. (1993). Appl Environ Microbiol, 59, 2311–2316.Google Scholar
  13. 13.
    Sharma, A., Adhikari, S., & Satyanarayana, T. (2007). World Journal of Microbiology & Biotechnology, 23, 483–490. doi: 10.1007/s11274-006-9250-1.CrossRefGoogle Scholar
  14. 14.
    Subramaniyan, S., & Prema, P. (2000). FEMS Microbiology Letters, 183, 1–7. doi: 10.1111/j.1574-6968.2000.tb08925.x.CrossRefGoogle Scholar
  15. 15.
    Subramaniyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64. doi: 10.1080/07388550290789450.CrossRefGoogle Scholar
  16. 16.
    Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology, 29, 3–23. doi: 10.1016/j.femsre.2004.06.005.CrossRefGoogle Scholar
  17. 17.
    Viikari, L., Kantelinen, A., Buchert, J., & Puls, J. (1994). Applied Microbiology and Biotechnology, 41, 124–129. doi: 10.1007/BF00166093.CrossRefGoogle Scholar
  18. 18.
    Virupakshi, S., Girresh, Babu, Satish, G. R., & Naik, G. R. (2005). Process Biochemistry, 40, 431–435. doi: 10.1016/j.procbio.2004.01.027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dengeti Shrinivas
    • 1
  • Gunashekaran Savitha
    • 1
  • Kumar Raviranjan
    • 1
  • Gajanan Ramchandra Naik
    • 1
    Email author
  1. 1.Department of BiotechnologyGulbarga UniversityGulbargaIndia

Personalised recommendations