Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 2015–2026 | Cite as

Lipase Immobilized on the Hydrophobic Polytetrafluoroethene Membrane with Nonwoven Fabric and Its Application in Intensifying Synthesis of Butyl Oleate

  • Shu-Guang Wang
  • Wei-Dong ZhangEmail author
  • Zheng Li
  • Zhong-Qi Ren
  • Hong-Xia Liu


The synthesis of butyl oleate was studied in this paper with immobilized lipase. Five types of membrane were used as support to immobilize Rhizopus arrhizus lipase by following a procedure combining filtration and protein cross-linking. Results showed that hydrophobic polytetrafluoroethene membrane with nonwoven fabric (HO-PTFE-NF) was the favorite choice in terms of higher protein loading, activity, and specific activity of immobilized lipase. The factors including solvent polarity, lipase dosage, concentration, and molar ratio of substrate and temperature were found to have significant influence on conversion. Results showed that hexane (logP = 3.53) was a favorable solvent for the biosynthesis of butyl oleate in our studies. The optimal conditions were experimentally determined of 50 U immobilized lipase, molar ratio of oleic acid to butanol of 1.0, substrate concentration of 0.12 mol/L, temperature of 37 °C, and reaction time of 2 h. The conversion was beyond 91% and decreased slightly after 18 cycles. Lipase immobilization can improve the conversion and the repeated use of immobilized lipase relative to free lipase.


Lipase immobilization Butyl oleate Conversion 



The authors are grateful to the National High Technology Research and Development Program of China (863) (NO.2007AA06Z310) and the Foundation of Beijing University of Chemical Technology for financial support.


  1. 1.
    Kohashi, H. (1990). in: Proceedings of the world conference on oleochemicals: into the 21st Century. Amer Oil Chemists Society, pp 243–250.Google Scholar
  2. 2.
    Linko, Y. Y., Rantanen, O., Yu, H. C., Linko, P., Tramper, J., & Vermüe, M. H. (1992). in: Biocatalysis in non-conventional media, progress in biotechnology (pp. 601–608). New York: Elsevier.Google Scholar
  3. 3.
    Linko, Y. Y., Lämsä, M., Huhtala, A., & Rantanen, O. (1995). Journal of the American Oil Chemists’ Society, 72, 1293–1299.CrossRefGoogle Scholar
  4. 4.
    Hills, G. (2003). European Journal of Lipid Science and Technology, 105, 601–607.CrossRefGoogle Scholar
  5. 5.
    Villeneuve, P., Muderhwa, J. M., Graille, J., & Haas, M. J. (2000). Journal of Molecular Catalysis. B, Enzymatic, 4, 113–148.CrossRefGoogle Scholar
  6. 6.
    Chang, S. W., Yang, C. J., Chen, F. Y., Akoh, C. C., & Shieh, C. J. (2009). Journal of Molecular Catalysis. B, Enzymatic, 56, 7–12.CrossRefGoogle Scholar
  7. 7.
    Yu, A., Liang, Z., & Caruso, F. (2005). Chemistry of Materials, 17, 171–175.CrossRefGoogle Scholar
  8. 8.
    Vafiadi, C., Topakas, E., Alissandratos, A., Faulds, C. B., & Christakopoulos, P. (2008). Journal of Biotechnology, 133, 497–504.Google Scholar
  9. 9.
    López Giraldo, L. J., Laguerre, M., Lecomte, J., Espinoza, M. C., Barouh, N., Baréa, B., et al. (2007). Enzyme and Microbial Technology, 41, 721–726.CrossRefGoogle Scholar
  10. 10.
    Cramer, J. F., Dueholm, M. S., Nielsen, S. B., Pedersen, D. S., Wimmer, R., & Pedersen, L. H. (2007). Enzyme and Microbial Technology, 41, 346–352.CrossRefGoogle Scholar
  11. 11.
    Habulin, M., & Knez, Z. (1991). Journal of Membrane Science, 61, 315–324.CrossRefGoogle Scholar
  12. 12.
    Ghamgui, H., Karra-Chaâbouni, M., & Gargouri, Y. (2004). Enzyme and Microbial Technology, 35, 355–363.CrossRefGoogle Scholar
  13. 13.
    Hughes, J. A., Zhou, S., Bhattacharyya, D., & Jay, M. (1991). Journal of Membrane Science, 60, 75–86.CrossRefGoogle Scholar
  14. 14.
    Ulbricht, M., & Papra, A. (1997). Enzyme and Microbial Technology, 20, 61–68.CrossRefGoogle Scholar
  15. 15.
    Magnan, E., Catarino, I., Paolucci-Jeanjean, D., Preziosi-Belloy, L., & Belleville, M. P. (2004). Journal of Membrane Science, 241, 161–166.CrossRefGoogle Scholar
  16. 16.
    Yu, J. G., Zhang, J. S., Zhao, A., & Ma, X. F. (2008). Catalysis Communications, 9, 1369–1374.CrossRefGoogle Scholar
  17. 17.
    Sousa, H. A., Crespo, J. G., & Afonso, C. A. M. (2000). Tetrahedron Asymmetry, 11, 929–934.CrossRefGoogle Scholar
  18. 18.
    Jolivalt, C., Brenon, S., Caminade, E., Mougin, C., & Pontié, M. (2000). Journal of Membrane Science, 180, 103–113.CrossRefGoogle Scholar
  19. 19.
    Dayal, R., & Godjevargova, T. (2006). Enzyme and Microbial Technology, 39, 1313–1318.CrossRefGoogle Scholar
  20. 20.
    Abrol, K., Qazi, G. N., & Ghosh, A. K. (2007). Journal of Biotechnology, 128, 838–848.CrossRefGoogle Scholar
  21. 21.
    Krajewska, B. (2004). Enzyme and Microbial Technology, 35, 126–139.CrossRefGoogle Scholar
  22. 22.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  23. 23.
    Saisuburamaniyan, N., Krithika, L., Dileena, K. P., Sivasubramanian, S., & Puvanakrishnan, P. (2004). Analytical Biochemistry, 330, 70–73.CrossRefGoogle Scholar
  24. 24.
    Leitgeb, M., & Knez, Ž. (1990). Journal of the American Oil Chemists’ Society, 67, 775–778.CrossRefGoogle Scholar
  25. 25.
    Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.CrossRefGoogle Scholar
  26. 26.
    Chen, J. P. (1996). Journal of Fermentation and Bioengineering, 82, 404–407.CrossRefGoogle Scholar
  27. 27.
    Zaks, A., & Klibanov, A. M. (1985). Proceedings of the National Academy of Sciences of the United States of America, 82, 3192–3196.CrossRefGoogle Scholar
  28. 28.
    Lv, X. X., Pan, Y., & Li, Y. G. (2007). Food Chemistry, 101, 1626–1632.CrossRefGoogle Scholar
  29. 29.
    Zaks, A., & Klibanov, A. M. (1984). Sciences, 224, 1249–1251.CrossRefGoogle Scholar
  30. 30.
    Janssen, A. E. M., Padt, A. V., & Sonsbeek, H. M. V. (1993). Biotechnology and Bioengineering, 41, 95–103.CrossRefGoogle Scholar
  31. 31.
    Chaudhary, A. K., Kamat, S. V., Beckman, E. J., Nurok, D., Kleyle, R. M., Hajdu, P., et al. (1996). Journal of the American Chemical Society, 118, 12891–12901.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shu-Guang Wang
    • 1
  • Wei-Dong Zhang
    • 1
    Email author
  • Zheng Li
    • 1
  • Zhong-Qi Ren
    • 1
  • Hong-Xia Liu
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations