Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1996–2007 | Cite as

Monitoring of Cell Viability and Proliferation in Hydrogel-Encapsulated System by Resazurin Assay

  • Jing Xiao
  • Ying Zhang
  • Jianzheng Wang
  • Weiting Yu
  • Wei Wang
  • Xiaojun MaEmail author


Cell microencapsulation is a promising approach for cell implantation, cell-based gene therapy and large-scale cell culture. For better quality control, it is important to accurately measure the microencapsulated cell viability and proliferation in the culture. A number of assays have been used for this purpose, but limitations arise. In this study, we investigated the feasibility and reliability of resazurin as a cell growth indicator in microencapsulated culture system. According to the experiment data, there was a reversible, time- and dose-dependent growth inhibition as observed for resazurin application in encapsulated cells. A positive relationship was observed between reduction of resazurin and CHO cell number in microcapsule. Moreover, the resazurin assay provided an equivalent result to the commonly used MTT method in determining CHO cell proliferation in APA microcapsule with no notable influence on cell distribution and organization pattern. In conclusion, resazurin assay is offered as a simple, rapid and non-invasive method for in vitro microencapsulated cell viability and proliferation measurement.


Microencapsulated cell APA Resazurin MTT Non-invasive monitoring of cell proliferation 



This work was supported by the National Natural Science Foundation under Grant number 30970885 and National Key Sci-Tech Special Project of China under Grant number 2008ZX10002-019. We thank the many colleagues and collaborators who have contributed to the development of this work.


  1. 1.
    Kung, I. M., Wang, F. F., Chang, Y. C., & Wang, Y. J. (1995). Biomaterials, 16, 649–655.CrossRefGoogle Scholar
  2. 2.
    Jones, L. J., Gray, M., Yue, S. T., Haugland, R. P., & Singer, V. L. (2001). Journal of Immunological Methods, 254, 85–98.CrossRefGoogle Scholar
  3. 3.
    Zhang, X. L., Wang, W., Xie, Y. B., Zhang, Y., Wang, X. L., Guo, X., et al. (2006). Applied Biochemistry and Biotechnology, 134, 61–76.CrossRefGoogle Scholar
  4. 4.
    Kedzlorek, D. A., Walczak, P., Fu, Y., Azone, N., Arepally, A., Bulte, J. W., et al. (2008). Circulation, 118, S519–S519.CrossRefGoogle Scholar
  5. 5.
    Kedzlorek, D. A., Walczak, P., Fu, Y., Azone, N., Arepally, A., Bulte, J. W., et al. (2009). Journal of the American College of Cardiology, 53, A453–A453.Google Scholar
  6. 6.
    Page, B., Page, M., & Noel, C. (1993). International Journal of Oncology, 3, 473–476.Google Scholar
  7. 7.
    Hamid, R., Rotshteyn, Y., Rabadi, L., Parikh, R., & Bullock, P. (2004). Toxicology in Vitro, 18, 703–710.CrossRefGoogle Scholar
  8. 8.
    Perrot, S. B., Dutertre, C. H., Martin, C., Warnet, J. M., & Rat, P. (2003). Cytometry Part A, 55A, 7–14.CrossRefGoogle Scholar
  9. 9.
    Shahan, T. A., Siegel, P. D., Sorenson, W. G., Kuschner, W. G., & Lewis, D. M. (1994). Journal of Immunological Methods, 175, 181–187.CrossRefGoogle Scholar
  10. 10.
    Nasiry, S., Geusens, N., Hanssens, M., Luyten, C., & Pijnenborg, R. (2007). Human Reproduction, 22, 1304–1309.CrossRefGoogle Scholar
  11. 11.
    Francois, S., Chakfe, N., Durand, B., & Laroche, G. (2009). Acta Biomaterialia, 5, 2418–2428.CrossRefGoogle Scholar
  12. 12.
    Galler, K. M., Cavender, A., Yuwono, V., Dong, H., Shi, S., Schmalz, G., et al. (2008). Tissue Engineering Part A, 14, 2051–2058.CrossRefGoogle Scholar
  13. 13.
    Tuschl, G., Hrach, J., Walter, Y., Hewitt, P. G., & Mueller, S. O. (2009). Chemico-Biological Interactions, 181, 124–137.CrossRefGoogle Scholar
  14. 14.
    Wilson, C. G., Sisco, P. N., Gadala, F. A., Murphy, C. J., & Goldsmith, E. C. (2009). Biomaterials, 30, 5639–5648.CrossRefGoogle Scholar
  15. 15.
    Ma, X. J., Vacek, I., & Sun, A. (1994). Artificial Cells Blood Substitutes and Immobilization Biotechnology, 22, 43–69.CrossRefGoogle Scholar
  16. 16.
    Goegan, P., Johnson, G., & Vincent, R. (1995). Toxicology in Vitro, 9, 257–266.CrossRefGoogle Scholar
  17. 17.
    Ahmed, S. A., Gogal, R. M., & Walsh, J. E. (1994). Journal of Immunological Methods, 170, 211–224.CrossRefGoogle Scholar
  18. 18.
    Larson, E. M., Doughman, D. J., Gregerson, D. S., & Obritsch, W. F. (1997). Investigative Ophthalmology and Visual Science, 38, 1929–1933.Google Scholar
  19. 19.
    Voytikharbin, S. L., Brightman, A. O., Waisner, B., Lamar, C. H., & Badylak, S. F. (1998). In Vitro Cellular and Developmental Biology-Animal, 34, 239–246.CrossRefGoogle Scholar
  20. 20.
    Squatrito, R. C., Connor, J. P., & Buller, R. E. (1995). Gynecologic Oncology, 58, 101–105.CrossRefGoogle Scholar
  21. 21.
    Back, S. A., Khan, R., Gan, X. D., Rosenberg, P. A., & Volpe, J. J. (1999). Journal of Neuroscience Methods, 91, 47–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jing Xiao
    • 1
    • 2
  • Ying Zhang
    • 1
  • Jianzheng Wang
    • 1
    • 2
  • Weiting Yu
    • 1
  • Wei Wang
    • 1
  • Xiaojun Ma
    • 1
    Email author
  1. 1.Laboratory of Biomedical Material Engineering, Department of Science and Technology, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations