Skip to main content

Advertisement

Log in

Oil Accumulation via Heterotrophic/Mixotrophic Chlorella protothecoides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgal oil is a potential energy source because it can be easily converted to fatty acid methyl ester or hydrocarbon type of diesel, and it is produced with relatively higher productivity compared with oil from plants and animals. Heterotrophic growth of microalgae is superior due to its high final product concentration; however, the cost of the raw materials is unacceptable if sugar is utilized as the carbon source. The aim of this study is to optimize the lipid accumulation of Chlorella protothecoides by using carbon sources other than glucose in heterotrophic and mixotrophic cultures. Different factors such as different carbon sources, carbon to nitrogen ratio, initial pH level, salinity, and rotational speed are studied in affecting the cell growth and the oil accumulation. Our experiments revealed that the heterotrophic and mixotrophic cultures of C. protothecoides grew better than autotrophic cultures. C. protothecoides can grow on glycerol or acetate, as well as on glucose. Several stress factors were confirmed or discovered to significantly increase the lipid content of microalgae cells. The replacement of glycerol and acetate as carbon sources for microalgae cultivations provides potential for waste utilization: glycerol from biodiesel industry and acetate from biohydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peng, W. M., Wu, Q. Y., & Tu, P. G. (2000). Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. Journal of Applied Phycology, 12, 147–152.

    Article  CAS  Google Scholar 

  2. Miao, X. L., & Wu, Q. Y. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85–93.

    Article  CAS  Google Scholar 

  3. Angenent, L. T., Karim, K., Al-Dahhan, M. H., & Domiguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485.

    Article  CAS  Google Scholar 

  4. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  5. Du, Z. W., Li, H. R., & Gu, T. Y. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.

    Article  CAS  Google Scholar 

  6. Boddiger, D. (2007). Boosting biofluel crops could threaten food security. Lancet, 370, 923–924.

    Article  Google Scholar 

  7. Stein, K. (2007). Food vs biofuel. Journal of the American Dietetic Association, 107, 1870.

    Article  Google Scholar 

  8. Miao, X. L., & Wu, Q. Y. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  CAS  Google Scholar 

  9. Xu, H., Miao, X. L., & Wu, Q. Y. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507.

    Article  CAS  Google Scholar 

  10. Li, X. F., Xu, H., & Wu, Q. Y. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.

    Article  CAS  Google Scholar 

  11. Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production-current state of the art and challenges. Journal of Industrial Microbiology & Biotechnology, 35, 421–430.

    Article  CAS  Google Scholar 

  12. Hossain, A. B. M. S., & Boyce, A. N. (2009). Biodiesel production from waste sunflower cooking oil as an environmental recycling process and renewable energy. Bulgarian Journal of Agricultural Science, 15, 313–318.

    Google Scholar 

  13. Fu, B. S., Gao, L. J., Niu, L., Wei, R. P., & Xiao, G. M. (2009). Biodiesel from waste cooking oil via heterogeneous superacid catalyst SO42-/ZrO2. Energy & Fuels, 23, 569–572.

    Article  CAS  Google Scholar 

  14. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126–131.

    Article  CAS  Google Scholar 

  15. Foglia, T. A., & Barr, P. A. (1976). Decarbonylation dehydration of fatty-acids to alkenes in presence of transition-metal complexes. Journal of the American Oil Chemists' Society, 53, 737–741.

    Article  CAS  Google Scholar 

  16. Maier, W. F., Roth, W., Thies, I., & Schleyer, P. V. (1982). Hydrogenolysis. 4. Gas-phase decarboxylation of carboxylic-acids. Chemische Berichte-Recueil, 115, 808–812.

    Article  CAS  Google Scholar 

  17. Snare, M., Kubickova, I., Maki-Arvela, P., Chichova, D., Eranen, K., & Murzin, D. Y. (2008). Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel, 87, 933–945.

    Article  CAS  Google Scholar 

  18. Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70, 313–321.

    Article  CAS  Google Scholar 

  19. O'Connor, W., & Diemar, J. (1991). Techniques for the mass culture of marine microalgae. NSWAF Advisory Bulletin, 1–3.

  20. Chovancikova, M., & Simek, V. (2001). Effects of high-fat and Chlorella vulgaris feeding on changes in lipid metabolism in mice. Biologia, 56, 661–666.

    Google Scholar 

  21. Lee, Y. K. (2001). Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology, 13, 307–315.

    Article  Google Scholar 

  22. Syrett, P. J., Merrett, M. J., & Bocks, S. M. (1964). Assimilation of acetate by Chlorella vulgaris. Journal of Experimental Botany, 15, 35.

    Article  CAS  Google Scholar 

  23. Matsuka, M., Miyachi, S., & Hase, E. (1969). Acetate metabolism in process of acetate-bleaching of Chlorella protothecoides. Plant & Cell Physiology, 10, 527.

    CAS  Google Scholar 

  24. Matsuka, M., & Hase, E. (1970). Some aspects of metabolism of glucose and acetate in Chlorella-protothecoides. Bulletin of the Faculty of Agriculture Tamagawa University, 10, 41–48.

    Google Scholar 

  25. Ferraz, C. A. M., Frey, K. G., & Aquarone, E. (1983). Influence of the sodium-acetate on the production of cellular lipids and uptake of Mn and Fe in Chlorella-vulgaris. Revista de Microbiologia, 14, 78–83.

    CAS  Google Scholar 

  26. Ceron Garcia, M. C., Camacho, F. G., Miron, A. S., Sevilla, J. M. F., Chisti, Y., & Grima, E. M. (2006). Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of Microbiology and Biotechnology, 16, 689–694.

    CAS  Google Scholar 

  27. Liang, Y. N., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnological Letters, 31, 1043–1049.

    Article  CAS  Google Scholar 

  28. Chulanovskaya, M. V., Glagoleva, T. A., & Zalenskii, O. V. (1981). Effect of Atp on photoassimilation of glucose by Chlorella. Soviet Plant Physiology, 28, 548–555.

    Google Scholar 

  29. de Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C-vulgaris, Scenedesmus obliquus and Spirulina sp cultivated in flasks and vertical tubular photobioreactors. Biotechnological Letters, 29, 1349–1352.

    Article  CAS  Google Scholar 

  30. Baker, J. E., & Thompson, J. F. (1961). Assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Plant Physiology, 36, 208.

    Article  CAS  Google Scholar 

  31. Bach, M. K. (1961). Apparent reversal of xanthine oxidase action in Chlorella vulgaris starved of nitrogen. Nature, 189, 485.

    Article  CAS  Google Scholar 

  32. Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.

    Article  Google Scholar 

  33. Dihoru, A. (1974). Effect of magnesium and carbon di oxide on photosynthesis and development of some uni cellular green algae. Studii si Cercetari de Biologie, 26, 183–186.

    Google Scholar 

  34. Bilgrami, K. S., & Kumar, S. (1997). Effects of copper, lead and zinc on phytoplankton growth. Biologia Plantarum, 39, 315–317.

    Article  CAS  Google Scholar 

  35. Borowitzka, L. J., Moulton, T. P., Borowitzka, M. A. (1986). Salinity and the Commercial Production of Beta Carotene from Dunaliella-Salina. In W. R. Barclay, & R. P. Mcintosh (Ed.), Beihefte Zur Nova Hedwigia, Heft 83 (Supplements to Nova Hedwigia, No. 83). Algal Biomass Technologies: An Interdisciplinary Perspective; Workshop on the Present Status and Future Directions for Biotechnologies Bas (pp. 224–229).

  36. Bolsunovskii, A., & Zotina, T. (1996). Effect of salinity on the growth of the cyanobacterium Spirulina platensis in mono- and mixed cultures. Mikrobiologiya, 65, 421–422.

    CAS  Google Scholar 

  37. Alyabyev, A. J., Loseva, N. L., Gordon, L. K., Andreyeva, I. N., Rachimova, G. G., Tribunskih, V. I., et al. (2007). The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochimica Acta, 458, 65–70.

    Article  CAS  Google Scholar 

  38. Giordano, M., Davis, J. S., Faranda, F., & Bowes, G. (1991). Response of Dunaliella-Salina grown at high and low carbon dioxide to different sources of nitrogen. Plant Physiology (Rockville), 96, 51.

    Google Scholar 

  39. Papanikolaou, S., & Aggelis, G. (2002). Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 82, 43–49.

    Article  CAS  Google Scholar 

  40. Lin, C. Y., & Lay, C. H. (2004). Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy, 29, 41–45.

    Article  CAS  Google Scholar 

  41. Xiong, W., Li, X. F., Xiang, J. Y., & Wu, Q. Y. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.

    Article  CAS  Google Scholar 

  42. Hogetsu, D., & Miyachi, S. (1977). Effects of Co2 concentration during growth on subsequent photosynthetic Co2 fixation in Chlorella. Plant & Cell Physiology, 18, 347–352.

    CAS  Google Scholar 

  43. Borowitzka Michael, A., & Borowitzka, L. J. (1988). Micro-algal biotechnology. Cambridge: Cambridge University Press.

    Google Scholar 

  44. Becker, E. W. (1994). Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press.

    Google Scholar 

  45. Shi, X. M., Zhang, X. W., & Chen, F. (2000). Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 27, 312–318.

    Article  CAS  Google Scholar 

  46. Gonzalez-Bashan, L. E., Lebsky, V. K., Hernandez, J. P., Bustillos, J. J., & Bashan, Y. (2000). Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Canadian Journal of Microbiology, 46, 653–659.

    Article  CAS  Google Scholar 

  47. Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.

    Article  CAS  Google Scholar 

  48. Chen, G. Q., & Chen, F. (2006). Growing phototrophic cells without light. Biotechnological Letters, 28, 607–616.

    Article  CAS  Google Scholar 

  49. Takagi, M., Watanabe, K., Yamaberi, K., & Yoshida, T. (2000). Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp UTEX LB1999. Applied Microbiology and Biotechnology, 54, 112–117.

    Article  CAS  Google Scholar 

  50. Dohler, G. (1981). Effect of oxygen on photosynthetic-Co2 fixation by Chlorella-vulgaris. Biochemie und Physiologie der Pflanzen, 176, 439–446.

    Google Scholar 

  51. Blanco, A. M., Moreno, J., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp in open ponds. Applied Microbiology and Biotechnology, 73, 1259–1266.

    Article  CAS  Google Scholar 

  52. Shi, X. M., Wu, Z. Y., & Chen, F. (2006). Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Molecular Nutrition & Food Research, 50, 763–768.

    Article  CAS  Google Scholar 

  53. Hu, B., Zhou, X., Forney, L., & Chen, S. L. (2009). Changes in microbial community composition following treatment of methanogenic granules with chloroform. Environmental Progress & Sustainable Energy, 28, 60–71.

    Article  Google Scholar 

  54. Khotimchenko, S. V., & Yakovleva, I. M. (2005). Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry, 66, 73–79.

    Article  CAS  Google Scholar 

  55. Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195–214.

    Article  CAS  Google Scholar 

  56. Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99, 4717–4722.

    Article  CAS  Google Scholar 

  57. Hsieh, C. H., & Wu, W. T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100, 3921–3926.

    Article  CAS  Google Scholar 

  58. Shi, X. M., Chen, F., Yuan, J. P., & Chen, H. (1997). Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology, 9, 445–450.

    Article  CAS  Google Scholar 

  59. Shi, X. M., Jiang, Y., & Chen, F. (2002). High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress, 18, 723–727.

    Article  CAS  Google Scholar 

  60. Running, J. A., Severson, D. K., & Schneider, K. J. (2002). Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P-moriformis during aerobic culturing at low pH. Journal of Industrial Microbiology & Biotechnology, 29, 93–98.

    Article  CAS  Google Scholar 

  61. Carlsson, A. S., van Beilen, J. B., Moller, R., Clayton, D. (2007). Micro- and Macro-algae: Utility for industrial applications. University of York. CNAP. Ref Type: Report.

  62. Borowitzka, M. A., & Borowitzka, L. J. (1988). Microalgal biotechnology. Cambridge: Cambridge University Press.

    Google Scholar 

  63. Chi, Z. Y., Hu, B., Liu, Y., Frear, C., Wen, Z. Y., & Chen, S. L. (2007). Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process. Applied Biochemistry and Biotechnology, 137, 805–815.

    Article  Google Scholar 

  64. Weldy, C.S., Huesemann M. (2010). Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. U.S. Department of Energy Journal of Undergraduate Research, 115–122. Ref Type: Magazine Article.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heredia-Arroyo, T., Wei, W. & Hu, B. Oil Accumulation via Heterotrophic/Mixotrophic Chlorella protothecoides . Appl Biochem Biotechnol 162, 1978–1995 (2010). https://doi.org/10.1007/s12010-010-8974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8974-4

Keywords

Navigation