Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1978–1995 | Cite as

Oil Accumulation via Heterotrophic/Mixotrophic Chlorella protothecoides

  • Tamarys Heredia-Arroyo
  • Wei Wei
  • Bo HuEmail author
Article

Abstract

Microalgal oil is a potential energy source because it can be easily converted to fatty acid methyl ester or hydrocarbon type of diesel, and it is produced with relatively higher productivity compared with oil from plants and animals. Heterotrophic growth of microalgae is superior due to its high final product concentration; however, the cost of the raw materials is unacceptable if sugar is utilized as the carbon source. The aim of this study is to optimize the lipid accumulation of Chlorella protothecoides by using carbon sources other than glucose in heterotrophic and mixotrophic cultures. Different factors such as different carbon sources, carbon to nitrogen ratio, initial pH level, salinity, and rotational speed are studied in affecting the cell growth and the oil accumulation. Our experiments revealed that the heterotrophic and mixotrophic cultures of C. protothecoides grew better than autotrophic cultures. C. protothecoides can grow on glycerol or acetate, as well as on glucose. Several stress factors were confirmed or discovered to significantly increase the lipid content of microalgae cells. The replacement of glycerol and acetate as carbon sources for microalgae cultivations provides potential for waste utilization: glycerol from biodiesel industry and acetate from biohydrogen production.

Keywords

Microalgae oil accumulation Chlorella Glycerol Acetate Bioenergy 

References

  1. 1.
    Peng, W. M., Wu, Q. Y., & Tu, P. G. (2000). Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. Journal of Applied Phycology, 12, 147–152.CrossRefGoogle Scholar
  2. 2.
    Miao, X. L., & Wu, Q. Y. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85–93.CrossRefGoogle Scholar
  3. 3.
    Angenent, L. T., Karim, K., Al-Dahhan, M. H., & Domiguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485.CrossRefGoogle Scholar
  4. 4.
    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  5. 5.
    Du, Z. W., Li, H. R., & Gu, T. Y. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.CrossRefGoogle Scholar
  6. 6.
    Boddiger, D. (2007). Boosting biofluel crops could threaten food security. Lancet, 370, 923–924.CrossRefGoogle Scholar
  7. 7.
    Stein, K. (2007). Food vs biofuel. Journal of the American Dietetic Association, 107, 1870.CrossRefGoogle Scholar
  8. 8.
    Miao, X. L., & Wu, Q. Y. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.CrossRefGoogle Scholar
  9. 9.
    Xu, H., Miao, X. L., & Wu, Q. Y. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507.CrossRefGoogle Scholar
  10. 10.
    Li, X. F., Xu, H., & Wu, Q. Y. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.CrossRefGoogle Scholar
  11. 11.
    Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production-current state of the art and challenges. Journal of Industrial Microbiology & Biotechnology, 35, 421–430.CrossRefGoogle Scholar
  12. 12.
    Hossain, A. B. M. S., & Boyce, A. N. (2009). Biodiesel production from waste sunflower cooking oil as an environmental recycling process and renewable energy. Bulgarian Journal of Agricultural Science, 15, 313–318.Google Scholar
  13. 13.
    Fu, B. S., Gao, L. J., Niu, L., Wei, R. P., & Xiao, G. M. (2009). Biodiesel from waste cooking oil via heterogeneous superacid catalyst SO42-/ZrO2. Energy & Fuels, 23, 569–572.CrossRefGoogle Scholar
  14. 14.
    Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126–131.CrossRefGoogle Scholar
  15. 15.
    Foglia, T. A., & Barr, P. A. (1976). Decarbonylation dehydration of fatty-acids to alkenes in presence of transition-metal complexes. Journal of the American Oil Chemists' Society, 53, 737–741.CrossRefGoogle Scholar
  16. 16.
    Maier, W. F., Roth, W., Thies, I., & Schleyer, P. V. (1982). Hydrogenolysis. 4. Gas-phase decarboxylation of carboxylic-acids. Chemische Berichte-Recueil, 115, 808–812.CrossRefGoogle Scholar
  17. 17.
    Snare, M., Kubickova, I., Maki-Arvela, P., Chichova, D., Eranen, K., & Murzin, D. Y. (2008). Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel, 87, 933–945.CrossRefGoogle Scholar
  18. 18.
    Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70, 313–321.CrossRefGoogle Scholar
  19. 19.
    O'Connor, W., & Diemar, J. (1991). Techniques for the mass culture of marine microalgae. NSWAF Advisory Bulletin, 1–3.Google Scholar
  20. 20.
    Chovancikova, M., & Simek, V. (2001). Effects of high-fat and Chlorella vulgaris feeding on changes in lipid metabolism in mice. Biologia, 56, 661–666.Google Scholar
  21. 21.
    Lee, Y. K. (2001). Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology, 13, 307–315.CrossRefGoogle Scholar
  22. 22.
    Syrett, P. J., Merrett, M. J., & Bocks, S. M. (1964). Assimilation of acetate by Chlorella vulgaris. Journal of Experimental Botany, 15, 35.CrossRefGoogle Scholar
  23. 23.
    Matsuka, M., Miyachi, S., & Hase, E. (1969). Acetate metabolism in process of acetate-bleaching of Chlorella protothecoides. Plant & Cell Physiology, 10, 527.Google Scholar
  24. 24.
    Matsuka, M., & Hase, E. (1970). Some aspects of metabolism of glucose and acetate in Chlorella-protothecoides. Bulletin of the Faculty of Agriculture Tamagawa University, 10, 41–48.Google Scholar
  25. 25.
    Ferraz, C. A. M., Frey, K. G., & Aquarone, E. (1983). Influence of the sodium-acetate on the production of cellular lipids and uptake of Mn and Fe in Chlorella-vulgaris. Revista de Microbiologia, 14, 78–83.Google Scholar
  26. 26.
    Ceron Garcia, M. C., Camacho, F. G., Miron, A. S., Sevilla, J. M. F., Chisti, Y., & Grima, E. M. (2006). Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of Microbiology and Biotechnology, 16, 689–694.Google Scholar
  27. 27.
    Liang, Y. N., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnological Letters, 31, 1043–1049.CrossRefGoogle Scholar
  28. 28.
    Chulanovskaya, M. V., Glagoleva, T. A., & Zalenskii, O. V. (1981). Effect of Atp on photoassimilation of glucose by Chlorella. Soviet Plant Physiology, 28, 548–555.Google Scholar
  29. 29.
    de Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C-vulgaris, Scenedesmus obliquus and Spirulina sp cultivated in flasks and vertical tubular photobioreactors. Biotechnological Letters, 29, 1349–1352.CrossRefGoogle Scholar
  30. 30.
    Baker, J. E., & Thompson, J. F. (1961). Assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Plant Physiology, 36, 208.CrossRefGoogle Scholar
  31. 31.
    Bach, M. K. (1961). Apparent reversal of xanthine oxidase action in Chlorella vulgaris starved of nitrogen. Nature, 189, 485.CrossRefGoogle Scholar
  32. 32.
    Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.CrossRefGoogle Scholar
  33. 33.
    Dihoru, A. (1974). Effect of magnesium and carbon di oxide on photosynthesis and development of some uni cellular green algae. Studii si Cercetari de Biologie, 26, 183–186.Google Scholar
  34. 34.
    Bilgrami, K. S., & Kumar, S. (1997). Effects of copper, lead and zinc on phytoplankton growth. Biologia Plantarum, 39, 315–317.CrossRefGoogle Scholar
  35. 35.
    Borowitzka, L. J., Moulton, T. P., Borowitzka, M. A. (1986). Salinity and the Commercial Production of Beta Carotene from Dunaliella-Salina. In W. R. Barclay, & R. P. Mcintosh (Ed.), Beihefte Zur Nova Hedwigia, Heft 83 (Supplements to Nova Hedwigia, No. 83). Algal Biomass Technologies: An Interdisciplinary Perspective; Workshop on the Present Status and Future Directions for Biotechnologies Bas (pp. 224–229).Google Scholar
  36. 36.
    Bolsunovskii, A., & Zotina, T. (1996). Effect of salinity on the growth of the cyanobacterium Spirulina platensis in mono- and mixed cultures. Mikrobiologiya, 65, 421–422.Google Scholar
  37. 37.
    Alyabyev, A. J., Loseva, N. L., Gordon, L. K., Andreyeva, I. N., Rachimova, G. G., Tribunskih, V. I., et al. (2007). The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochimica Acta, 458, 65–70.CrossRefGoogle Scholar
  38. 38.
    Giordano, M., Davis, J. S., Faranda, F., & Bowes, G. (1991). Response of Dunaliella-Salina grown at high and low carbon dioxide to different sources of nitrogen. Plant Physiology (Rockville), 96, 51.Google Scholar
  39. 39.
    Papanikolaou, S., & Aggelis, G. (2002). Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 82, 43–49.CrossRefGoogle Scholar
  40. 40.
    Lin, C. Y., & Lay, C. H. (2004). Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy, 29, 41–45.CrossRefGoogle Scholar
  41. 41.
    Xiong, W., Li, X. F., Xiang, J. Y., & Wu, Q. Y. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.CrossRefGoogle Scholar
  42. 42.
    Hogetsu, D., & Miyachi, S. (1977). Effects of Co2 concentration during growth on subsequent photosynthetic Co2 fixation in Chlorella. Plant & Cell Physiology, 18, 347–352.Google Scholar
  43. 43.
    Borowitzka Michael, A., & Borowitzka, L. J. (1988). Micro-algal biotechnology. Cambridge: Cambridge University Press.Google Scholar
  44. 44.
    Becker, E. W. (1994). Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press.Google Scholar
  45. 45.
    Shi, X. M., Zhang, X. W., & Chen, F. (2000). Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 27, 312–318.CrossRefGoogle Scholar
  46. 46.
    Gonzalez-Bashan, L. E., Lebsky, V. K., Hernandez, J. P., Bustillos, J. J., & Bashan, Y. (2000). Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Canadian Journal of Microbiology, 46, 653–659.CrossRefGoogle Scholar
  47. 47.
    Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.CrossRefGoogle Scholar
  48. 48.
    Chen, G. Q., & Chen, F. (2006). Growing phototrophic cells without light. Biotechnological Letters, 28, 607–616.CrossRefGoogle Scholar
  49. 49.
    Takagi, M., Watanabe, K., Yamaberi, K., & Yoshida, T. (2000). Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp UTEX LB1999. Applied Microbiology and Biotechnology, 54, 112–117.CrossRefGoogle Scholar
  50. 50.
    Dohler, G. (1981). Effect of oxygen on photosynthetic-Co2 fixation by Chlorella-vulgaris. Biochemie und Physiologie der Pflanzen, 176, 439–446.Google Scholar
  51. 51.
    Blanco, A. M., Moreno, J., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp in open ponds. Applied Microbiology and Biotechnology, 73, 1259–1266.CrossRefGoogle Scholar
  52. 52.
    Shi, X. M., Wu, Z. Y., & Chen, F. (2006). Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Molecular Nutrition & Food Research, 50, 763–768.CrossRefGoogle Scholar
  53. 53.
    Hu, B., Zhou, X., Forney, L., & Chen, S. L. (2009). Changes in microbial community composition following treatment of methanogenic granules with chloroform. Environmental Progress & Sustainable Energy, 28, 60–71.CrossRefGoogle Scholar
  54. 54.
    Khotimchenko, S. V., & Yakovleva, I. M. (2005). Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry, 66, 73–79.CrossRefGoogle Scholar
  55. 55.
    Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195–214.CrossRefGoogle Scholar
  56. 56.
    Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99, 4717–4722.CrossRefGoogle Scholar
  57. 57.
    Hsieh, C. H., & Wu, W. T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100, 3921–3926.CrossRefGoogle Scholar
  58. 58.
    Shi, X. M., Chen, F., Yuan, J. P., & Chen, H. (1997). Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology, 9, 445–450.CrossRefGoogle Scholar
  59. 59.
    Shi, X. M., Jiang, Y., & Chen, F. (2002). High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress, 18, 723–727.CrossRefGoogle Scholar
  60. 60.
    Running, J. A., Severson, D. K., & Schneider, K. J. (2002). Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P-moriformis during aerobic culturing at low pH. Journal of Industrial Microbiology & Biotechnology, 29, 93–98.CrossRefGoogle Scholar
  61. 61.
    Carlsson, A. S., van Beilen, J. B., Moller, R., Clayton, D. (2007). Micro- and Macro-algae: Utility for industrial applications. University of York. CNAP. Ref Type: Report.Google Scholar
  62. 62.
    Borowitzka, M. A., & Borowitzka, L. J. (1988). Microalgal biotechnology. Cambridge: Cambridge University Press.Google Scholar
  63. 63.
    Chi, Z. Y., Hu, B., Liu, Y., Frear, C., Wen, Z. Y., & Chen, S. L. (2007). Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process. Applied Biochemistry and Biotechnology, 137, 805–815.CrossRefGoogle Scholar
  64. 64.
    Weldy, C.S., Huesemann M. (2010). Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. U.S. Department of Energy Journal of Undergraduate Research, 115–122. Ref Type: Magazine Article.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Puerto Rico at MayagüezMayagüezPuerto Rico
  2. 2.Department of Mathematical SciencesUniversity of Puerto Rico at MayagüezMayagüezPuerto Rico
  3. 3.Department of Bioproducts and Biosystems EngineeringUniversity of Minnesota at Twin CitiesSaint PaulUSA

Personalised recommendations