Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1952–1960 | Cite as

Effect of Initial Cell Concentration on Ethanol Production by Flocculent Saccharomyces cerevisiae with Xylose-Fermenting Ability

  • Akinori MatsushikaEmail author
  • Shigeki Sawayama


Different initial cell concentrations of a recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated for their effects on xylose fermentation and glucose–xylose cofermentation. A high initial cell concentration greatly increased both the substrate utilization and ethanol production rates. During xylose fermentation, the highest rates of xylose consumption (2.58 g/L h) and ethanol production (0.83 g/L h) were obtained at an initial cell concentration of 13.1 g/L. During cofermentation, the highest rates of glucose consumption (14.4 g/L h), xylose consumption (2.79 g/L h), and ethanol production (6.68 g/L h) were obtained at an initial cell concentration of 12.7 g/L. However, a high initial cell density had no positive effect on the maximum ethanol concentration and ethanol yield mainly due to the increased amount of by-products including xylitol. The ethanol yield remained almost constant (0.34 g/g) throughout xylose fermentation (initial cell concentration range, 1.81–13.1 g/L), while it was slightly lower at high initial cell concentrations (9.87 and 12.7 g/L) during cofermentation. The determination of the appropriate initial cell concentration is necessary for the improvement of substrate utilization and ethanol yield.


Recombinant Saccharomyces cerevisiae Xylose Ethanol Cofermentation Cell concentration 



The authors thank Dr. Ohgiya Satoru (AIST) for his useful discussions and Ms. Maiko Kato for her technical assistance. This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.


  1. 1.
    Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291.CrossRefGoogle Scholar
  2. 2.
    Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Applied Microbiology and Biotechnology, 74, 937–953.CrossRefGoogle Scholar
  3. 3.
    Jeffries, T. W., & Jin, Y. S. (2004). Applied Microbiology and Biotechnology, 63, 495–509.CrossRefGoogle Scholar
  4. 4.
    Hahn-Hägerdal, B., Karhumaa, K., Jeppsson, M., & Gorwa-Grauslund, M. F. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 147–177.CrossRefGoogle Scholar
  5. 5.
    van Maris, A. J., Winkler, A. A., Kuyper, M., de Laat, W. T., van Dijken, J. P., & Pronk, J. T. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 179–204.CrossRefGoogle Scholar
  6. 6.
    Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Applied Microbiology and Biotechnology, 84, 37–53.CrossRefGoogle Scholar
  7. 7.
    Van Vleet, J. H., & Jeffries, T. W. (2009). Current Opinion in Biotechnology, 20, 300–306.CrossRefGoogle Scholar
  8. 8.
    Matsushika, A., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2009). Bioresource Technology, 100, 2392–2398.CrossRefGoogle Scholar
  9. 9.
    Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K., & Sawayama, S. (2009). Applied and Environmental Microbiology, 75, 3818–3822.CrossRefGoogle Scholar
  10. 10.
    van Hoek, P., de Hulster, E., van Dijken, J. P., & Pronk, J. T. (2000). Biotechnology and Bioengineering, 68, 517–523.CrossRefGoogle Scholar
  11. 11.
    Cheng, J. S., Ding, M. Z., Tian, H. C., & Yuan, Y. J. (2009). Proteomics, 9, 1–10.CrossRefGoogle Scholar
  12. 12.
    Sen, R., & Swaminathan, T. (2004). Biochemical Engeering Journal, 21, 141–148.CrossRefGoogle Scholar
  13. 13.
    Krishnan, M. S., Ho, N. W. Y., & Tsao, G. T. (1999). Applied Biochemistry and Biotechnology, 77–79, 373–388.CrossRefGoogle Scholar
  14. 14.
    Agbogbo, F. K., Coward-Kelly, G., Torry-Smith, M., Wenger, K., & Jeffries, T. W. (2007). Applied Biochemistry and Biotechnology, 136–140, 653–662.CrossRefGoogle Scholar
  15. 15.
    Zhong, C., Lau, M. W., Balan, V., Dale, B. E., & Yuan, Y. J. (2009). Applied Microbiology and Biotechnology, 84, 667–676.CrossRefGoogle Scholar
  16. 16.
    Kuriyama, H., Seiko, Y., Murakami, T., Kobayashi, H., & Sonoda, Y. (1985). Journal of Fermentation Technology, 63, 159–165.Google Scholar
  17. 17.
    Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., et al. (2008). Applied Microbiology and Biotechnology, 81, 243–255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Biomass Technology Research CenterNational Institute of Advanced Industrial Science and TechnologyHiroshimaJapan

Personalised recommendations