Skip to main content
Log in

Effect of Initial Cell Concentration on Ethanol Production by Flocculent Saccharomyces cerevisiae with Xylose-Fermenting Ability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Different initial cell concentrations of a recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated for their effects on xylose fermentation and glucose–xylose cofermentation. A high initial cell concentration greatly increased both the substrate utilization and ethanol production rates. During xylose fermentation, the highest rates of xylose consumption (2.58 g/L h) and ethanol production (0.83 g/L h) were obtained at an initial cell concentration of 13.1 g/L. During cofermentation, the highest rates of glucose consumption (14.4 g/L h), xylose consumption (2.79 g/L h), and ethanol production (6.68 g/L h) were obtained at an initial cell concentration of 12.7 g/L. However, a high initial cell density had no positive effect on the maximum ethanol concentration and ethanol yield mainly due to the increased amount of by-products including xylitol. The ethanol yield remained almost constant (0.34 g/g) throughout xylose fermentation (initial cell concentration range, 1.81–13.1 g/L), while it was slightly lower at high initial cell concentrations (9.87 and 12.7 g/L) during cofermentation. The determination of the appropriate initial cell concentration is necessary for the improvement of substrate utilization and ethanol yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  2. Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Applied Microbiology and Biotechnology, 74, 937–953.

    Article  Google Scholar 

  3. Jeffries, T. W., & Jin, Y. S. (2004). Applied Microbiology and Biotechnology, 63, 495–509.

    Article  CAS  Google Scholar 

  4. Hahn-Hägerdal, B., Karhumaa, K., Jeppsson, M., & Gorwa-Grauslund, M. F. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 147–177.

    Article  Google Scholar 

  5. van Maris, A. J., Winkler, A. A., Kuyper, M., de Laat, W. T., van Dijken, J. P., & Pronk, J. T. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 179–204.

    Article  Google Scholar 

  6. Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Applied Microbiology and Biotechnology, 84, 37–53.

    Article  CAS  Google Scholar 

  7. Van Vleet, J. H., & Jeffries, T. W. (2009). Current Opinion in Biotechnology, 20, 300–306.

    Article  Google Scholar 

  8. Matsushika, A., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2009). Bioresource Technology, 100, 2392–2398.

    Article  CAS  Google Scholar 

  9. Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K., & Sawayama, S. (2009). Applied and Environmental Microbiology, 75, 3818–3822.

    Article  CAS  Google Scholar 

  10. van Hoek, P., de Hulster, E., van Dijken, J. P., & Pronk, J. T. (2000). Biotechnology and Bioengineering, 68, 517–523.

    Article  Google Scholar 

  11. Cheng, J. S., Ding, M. Z., Tian, H. C., & Yuan, Y. J. (2009). Proteomics, 9, 1–10.

    Article  Google Scholar 

  12. Sen, R., & Swaminathan, T. (2004). Biochemical Engeering Journal, 21, 141–148.

    Article  CAS  Google Scholar 

  13. Krishnan, M. S., Ho, N. W. Y., & Tsao, G. T. (1999). Applied Biochemistry and Biotechnology, 77–79, 373–388.

    Article  Google Scholar 

  14. Agbogbo, F. K., Coward-Kelly, G., Torry-Smith, M., Wenger, K., & Jeffries, T. W. (2007). Applied Biochemistry and Biotechnology, 136–140, 653–662.

    Article  Google Scholar 

  15. Zhong, C., Lau, M. W., Balan, V., Dale, B. E., & Yuan, Y. J. (2009). Applied Microbiology and Biotechnology, 84, 667–676.

    Article  CAS  Google Scholar 

  16. Kuriyama, H., Seiko, Y., Murakami, T., Kobayashi, H., & Sonoda, Y. (1985). Journal of Fermentation Technology, 63, 159–165.

    CAS  Google Scholar 

  17. Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., et al. (2008). Applied Microbiology and Biotechnology, 81, 243–255.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ohgiya Satoru (AIST) for his useful discussions and Ms. Maiko Kato for her technical assistance. This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Matsushika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushika, A., Sawayama, S. Effect of Initial Cell Concentration on Ethanol Production by Flocculent Saccharomyces cerevisiae with Xylose-Fermenting Ability. Appl Biochem Biotechnol 162, 1952–1960 (2010). https://doi.org/10.1007/s12010-010-8972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8972-6

Keywords

Navigation