Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1901–1914 | Cite as

Bacterially Expressed Double-Stranded RNAs against Hot-Spot Sequences of Tobacco Mosaic Virus or Potato Virus Y Genome Have Different Ability to Protect Tobacco from Viral Infection

  • Zhao-Nan Sun
  • Guo-Hua Yin
  • Yun-Zhi Song
  • Hai-Long An
  • Chang-Xiang ZhuEmail author
  • Fu-Jiang WenEmail author


Posttranscriptional gene silencing, also known as RNA interference, involves degradation of homologous mRNA sequences in organisms. In plants, posttranscriptional gene silencing is part of a defense mechanism against virus infection, and double-stranded RNA is the pivotal factor that induces gene silencing. In this paper, we got seven hairpin RNAs (hpRNAs) constructs against different hot-spot sequences of Tobacco mosaic virus (TMV) or Potato virus Y (PVY) genome. After expression in Escherichia coli HT115, we extracted the seven hpRNAs for the test in tobacco against TMV or PVY infection. The data suggest that different hpRNAs against different hot-spot sequences of TMV or PVY genome had different ability to protect tobacco plants from viral infection. The resistance to TMV conferred by the hpRNA against the TMV movement protein was stronger than other TMV hpRNAs; the resistance to PVY conferred by the hpRNA against the PVY nuclear inclusion b was better than that induced by any other PVY hpRNAs. Northern blotting of siRNA showed that the resistance was indeed an RNA-mediated virus resistance.


Tobacco mosaic virus Potato virus Y RNA interference hpRNAs Hot-spot sequences 



We acknowledge Li Wei for the kind gift of the bacterial strain HT115. This work was supported by the National Natural Science Foundation of China (No. 30771408) and the Excellent Youth and Middle Age Scientists Fund of Shan Dong Province (No. 2007BS06007).


  1. 1.
    Lucas, G. B. (1975). Diseases of tobacco (3rd ed.). Raleigh: Biological Consulting Associates.Google Scholar
  2. 2.
    Shukla, D. D., Ward, C. W., & Brunt, A. A. (1994). The Potyviridae. Wallingford: CAB International.Google Scholar
  3. 3.
    Zhu, S. C., Wang, Y. T., & Wang, Z. F. (2002). Disease of tobacco in China, Beijing. Beijing: China Agriculture Press.Google Scholar
  4. 4.
    Al-Kaff, N. S., Covey, S. N., Kreike, M. M., Page, A. M., Pinder, R., & Dale, P. J. (1998). Science, 279, 2113–2115.CrossRefGoogle Scholar
  5. 5.
    Baulcombe, D. C. (2000). Science, 290, 1108–1109.CrossRefGoogle Scholar
  6. 6.
    Duan, C. G., Wang, C. H., Fang, R. X., & Guo, H. S. (2008). Journal of Virology, 82, 11084–11095.CrossRefGoogle Scholar
  7. 7.
    Fitchen, J. H., & Beachy, R. N. (1993). Annual Review of Microbiology, 47, 739–763.CrossRefGoogle Scholar
  8. 8.
    Hamilton, A. J., & Baulcombe, D. C. (1999). Science, 286, 950–952.CrossRefGoogle Scholar
  9. 9.
    Llave, C., Kasschau, K. D., & Carrington, J. C. (2000). Proceedings of the National Academy of Sciences of the United States of America, 97, 13401–13406.CrossRefGoogle Scholar
  10. 10.
    Vogler, H., Akbergenov, R., Shivaprasad, P. V., Dang, V., Fasler, M., Kwon, M. O., et al. (2007). Journal of Virology, 81, 10379–10388.CrossRefGoogle Scholar
  11. 11.
    Zhu, C. X., Song, Y. Z., Yin, G. H., & Wen, F. J. (2008). Journal of Phytopathology, 157, 101–107.CrossRefGoogle Scholar
  12. 12.
    Timmons, L., Court, D. L., & Fire, A. (2001). Gene, 263, 103–112.CrossRefGoogle Scholar
  13. 13.
    Tenllado, F., Martínez-García, B., Vargas, M., & Díaz-Ruíz, J. R. (2003). BMC Biotechnology, 3, 3.CrossRefGoogle Scholar
  14. 14.
    Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., & Karn, J. (1982). Proceedings of the National Academy of Sciences of the United States of America, 79, 5818–5822.CrossRefGoogle Scholar
  15. 15.
    Dougherty, W. G., & Carrington, J. C. (1988). Annual Review of Phytopathology, 26, 123–143.CrossRefGoogle Scholar
  16. 16.
    Dawson, W. O. (1999). Philos Trans R Soc Lond B Bio Sci, 354, 645–651.CrossRefGoogle Scholar
  17. 17.
    Tribodet, M., Glais, L., Kerlan, C. J., & Acquot, E. (2005). The Journal of General Virology, 86, 2101–2105.CrossRefGoogle Scholar
  18. 18.
    Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. NY: Cold Spring Harbor Laboratory Press.Google Scholar
  19. 19.
    Dasgupta, S., Fernandez, L., Kameyama, L., & Inada, T. (1998). Molecular Microbiology, 28, 629–640.Google Scholar
  20. 20.
    Takiff, H. E., Chen, S. M., & Court, D. L. (1989). Journal of Bacteriology, 171, 2581–2590.Google Scholar
  21. 21.
    Chen, P. Y., Wang, C. K., Soong, S. C., & To, K. Y. (2003). Molecular Breeding, 11, 287–293.Google Scholar
  22. 22.
    Liu, H. M., Zhu, C. X., Zhu, X. P., Guo, X. Q., Song, Y. Z., & Wen, F. J. (2007). Journal of Phytopathology, 155, 676–682.CrossRefGoogle Scholar
  23. 23.
    Pall, G. S., Codony-Servat, C., Byrne, J., Ritchie, L., & Hamilton, A. J. (2007). Nucleic Acids Research, 35, e60.CrossRefGoogle Scholar
  24. 24.
    Goto, K., Kanazawa, A., Kusaba, M., & Masuta, C. (2003). Plant Mol Biol Rep, 21, 51–58.CrossRefGoogle Scholar
  25. 25.
    Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., & Waterhouse, P. M. (2000). Nature, 407, 319–320.CrossRefGoogle Scholar
  26. 26.
    Vargas, M., Martínez-García, B., Díaz-Ruíz, J. R., & Tenllado, F. (2008). Virology Journal, 5, 42.CrossRefGoogle Scholar
  27. 27.
    Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 13959–13964.CrossRefGoogle Scholar
  28. 28.
    Zhu, C. X., Liu, H. M., Song, Y. Z., & Wen, F. J. (2005). Acta Genetica Sinica, 32, 94–103.Google Scholar
  29. 29.
    Zhu, J. H., Zhu, C. X., Wen, F. J., & Song, Y. Z. (2004). Acta Phytopathologica Sinica, 34, 133–140.Google Scholar
  30. 30.
    Yin, G. H., Sun, Z. N., Liu, N., Zhang, L., Song, Y. Z., Zhu, C. X., et al. (2009). Applied Microbiology and Biotechnology. doi: 10.1007/s00253-009-1967-y.Google Scholar
  31. 31.
    Zhang, D. Y., Zhu, C. H., Cheng, F. X., He, M. Y., Zhang, Z. H., & Liu, Y. (2008). Acta Phytopathologica Sinica, 38, 304–311.Google Scholar
  32. 32.
    Zhao, N. S., Yun, Z. S., Guo, H. Y., Chang, X. Z., & Fu, J. W. (2009). Journal of Phytopathology. doi: 10.1111/j.1439-0434.2009.01650.x.Google Scholar
  33. 33.
    Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P., et al. (1990). Biotechnology (N Y), 8, 127–134.CrossRefGoogle Scholar
  34. 34.
    Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., et al. (2001). The Plant Journal, 27, 581–590.CrossRefGoogle Scholar
  35. 35.
    Carr, J. P., Marsh, L. E., Lomonossoff, G. P., Sekiya, M. E., & Zaitlin, M. (1992). Mol Plant-Microbe Interact, 5, 397–404.Google Scholar
  36. 36.
    Donson, J., Kearney, C. M., Turpen, T. H., Khan, I. A., Kurath, G., Turpen, A. M., et al. (1993). Mol Plant-Microbe Interact, 6, 635–642.Google Scholar
  37. 37.
    Lomonossoff, G. P. (1995). Ann Rev Phytopathol, 33, 323–343.CrossRefGoogle Scholar
  38. 38.
    Suzuki, M., Masuta, C., Takanami, Y., & Kuwata, S. (1993). FEBS Letters, 379, 26–30.CrossRefGoogle Scholar
  39. 39.
    Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., & Beachy, R. N. (1995). Virology, 206, 307–313.CrossRefGoogle Scholar
  40. 40.
    Kotlizky, G., Katz, A., van der Laak, J., Boyko, V., Lapidot, M., Beachy, R. N., et al. (2001). Mol Plant-Microbe Interact, 14, 895–904.CrossRefGoogle Scholar
  41. 41.
    Lapidot, M., Gafny, R., Ding, B., Wolf, S., Lucas, W. J., & Beachy, R. N. (1993). The Plant Journal, 4, 959–970.CrossRefGoogle Scholar
  42. 42.
    Li, Y., Song, Y. Z., Zhu, C. X., & Wen, F. J. (2008). Acta Phytopathologica Sinica, 182, 145–155.Google Scholar
  43. 43.
    Hirai, S., Oka, S., & Adachi, E. (2007). Plant Cell Reports, 26(12), 651–659.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Life Sciences, State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anChina

Personalised recommendations