Skip to main content

Advertisement

Log in

Bacterially Expressed Double-Stranded RNAs against Hot-Spot Sequences of Tobacco Mosaic Virus or Potato Virus Y Genome Have Different Ability to Protect Tobacco from Viral Infection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 08 June 2010

Abstract

Posttranscriptional gene silencing, also known as RNA interference, involves degradation of homologous mRNA sequences in organisms. In plants, posttranscriptional gene silencing is part of a defense mechanism against virus infection, and double-stranded RNA is the pivotal factor that induces gene silencing. In this paper, we got seven hairpin RNAs (hpRNAs) constructs against different hot-spot sequences of Tobacco mosaic virus (TMV) or Potato virus Y (PVY) genome. After expression in Escherichia coli HT115, we extracted the seven hpRNAs for the test in tobacco against TMV or PVY infection. The data suggest that different hpRNAs against different hot-spot sequences of TMV or PVY genome had different ability to protect tobacco plants from viral infection. The resistance to TMV conferred by the hpRNA against the TMV movement protein was stronger than other TMV hpRNAs; the resistance to PVY conferred by the hpRNA against the PVY nuclear inclusion b was better than that induced by any other PVY hpRNAs. Northern blotting of siRNA showed that the resistance was indeed an RNA-mediated virus resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lucas, G. B. (1975). Diseases of tobacco (3rd ed.). Raleigh: Biological Consulting Associates.

    Google Scholar 

  2. Shukla, D. D., Ward, C. W., & Brunt, A. A. (1994). The Potyviridae. Wallingford: CAB International.

    Google Scholar 

  3. Zhu, S. C., Wang, Y. T., & Wang, Z. F. (2002). Disease of tobacco in China, Beijing. Beijing: China Agriculture Press.

    Google Scholar 

  4. Al-Kaff, N. S., Covey, S. N., Kreike, M. M., Page, A. M., Pinder, R., & Dale, P. J. (1998). Science, 279, 2113–2115.

    Article  CAS  Google Scholar 

  5. Baulcombe, D. C. (2000). Science, 290, 1108–1109.

    Article  CAS  Google Scholar 

  6. Duan, C. G., Wang, C. H., Fang, R. X., & Guo, H. S. (2008). Journal of Virology, 82, 11084–11095.

    Article  CAS  Google Scholar 

  7. Fitchen, J. H., & Beachy, R. N. (1993). Annual Review of Microbiology, 47, 739–763.

    Article  CAS  Google Scholar 

  8. Hamilton, A. J., & Baulcombe, D. C. (1999). Science, 286, 950–952.

    Article  CAS  Google Scholar 

  9. Llave, C., Kasschau, K. D., & Carrington, J. C. (2000). Proceedings of the National Academy of Sciences of the United States of America, 97, 13401–13406.

    Article  CAS  Google Scholar 

  10. Vogler, H., Akbergenov, R., Shivaprasad, P. V., Dang, V., Fasler, M., Kwon, M. O., et al. (2007). Journal of Virology, 81, 10379–10388.

    Article  CAS  Google Scholar 

  11. Zhu, C. X., Song, Y. Z., Yin, G. H., & Wen, F. J. (2008). Journal of Phytopathology, 157, 101–107.

    Article  Google Scholar 

  12. Timmons, L., Court, D. L., & Fire, A. (2001). Gene, 263, 103–112.

    Article  CAS  Google Scholar 

  13. Tenllado, F., Martínez-García, B., Vargas, M., & Díaz-Ruíz, J. R. (2003). BMC Biotechnology, 3, 3.

    Article  Google Scholar 

  14. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., & Karn, J. (1982). Proceedings of the National Academy of Sciences of the United States of America, 79, 5818–5822.

    Article  CAS  Google Scholar 

  15. Dougherty, W. G., & Carrington, J. C. (1988). Annual Review of Phytopathology, 26, 123–143.

    Article  CAS  Google Scholar 

  16. Dawson, W. O. (1999). Philos Trans R Soc Lond B Bio Sci, 354, 645–651.

    Article  CAS  Google Scholar 

  17. Tribodet, M., Glais, L., Kerlan, C. J., & Acquot, E. (2005). The Journal of General Virology, 86, 2101–2105.

    Article  CAS  Google Scholar 

  18. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  19. Dasgupta, S., Fernandez, L., Kameyama, L., & Inada, T. (1998). Molecular Microbiology, 28, 629–640.

  20. Takiff, H. E., Chen, S. M., & Court, D. L. (1989). Journal of Bacteriology, 171, 2581–2590.

    Google Scholar 

  21. Chen, P. Y., Wang, C. K., Soong, S. C., & To, K. Y. (2003). Molecular Breeding, 11, 287–293.

  22. Liu, H. M., Zhu, C. X., Zhu, X. P., Guo, X. Q., Song, Y. Z., & Wen, F. J. (2007). Journal of Phytopathology, 155, 676–682.

    Article  CAS  Google Scholar 

  23. Pall, G. S., Codony-Servat, C., Byrne, J., Ritchie, L., & Hamilton, A. J. (2007). Nucleic Acids Research, 35, e60.

    Article  Google Scholar 

  24. Goto, K., Kanazawa, A., Kusaba, M., & Masuta, C. (2003). Plant Mol Biol Rep, 21, 51–58.

    Article  CAS  Google Scholar 

  25. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., & Waterhouse, P. M. (2000). Nature, 407, 319–320.

    Article  CAS  Google Scholar 

  26. Vargas, M., Martínez-García, B., Díaz-Ruíz, J. R., & Tenllado, F. (2008). Virology Journal, 5, 42.

    Article  Google Scholar 

  27. Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 13959–13964.

    Article  CAS  Google Scholar 

  28. Zhu, C. X., Liu, H. M., Song, Y. Z., & Wen, F. J. (2005). Acta Genetica Sinica, 32, 94–103.

    CAS  Google Scholar 

  29. Zhu, J. H., Zhu, C. X., Wen, F. J., & Song, Y. Z. (2004). Acta Phytopathologica Sinica, 34, 133–140.

    Google Scholar 

  30. Yin, G. H., Sun, Z. N., Liu, N., Zhang, L., Song, Y. Z., Zhu, C. X., et al. (2009). Applied Microbiology and Biotechnology. doi:10.1007/s00253-009-1967-y.

    Google Scholar 

  31. Zhang, D. Y., Zhu, C. H., Cheng, F. X., He, M. Y., Zhang, Z. H., & Liu, Y. (2008). Acta Phytopathologica Sinica, 38, 304–311.

    Google Scholar 

  32. Zhao, N. S., Yun, Z. S., Guo, H. Y., Chang, X. Z., & Fu, J. W. (2009). Journal of Phytopathology. doi:10.1111/j.1439-0434.2009.01650.x.

    Google Scholar 

  33. Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P., et al. (1990). Biotechnology (N Y), 8, 127–134.

    Article  CAS  Google Scholar 

  34. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., et al. (2001). The Plant Journal, 27, 581–590.

    Article  CAS  Google Scholar 

  35. Carr, J. P., Marsh, L. E., Lomonossoff, G. P., Sekiya, M. E., & Zaitlin, M. (1992). Mol Plant-Microbe Interact, 5, 397–404.

    CAS  Google Scholar 

  36. Donson, J., Kearney, C. M., Turpen, T. H., Khan, I. A., Kurath, G., Turpen, A. M., et al. (1993). Mol Plant-Microbe Interact, 6, 635–642.

    CAS  Google Scholar 

  37. Lomonossoff, G. P. (1995). Ann Rev Phytopathol, 33, 323–343.

    Article  CAS  Google Scholar 

  38. Suzuki, M., Masuta, C., Takanami, Y., & Kuwata, S. (1993). FEBS Letters, 379, 26–30.

    Article  Google Scholar 

  39. Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., & Beachy, R. N. (1995). Virology, 206, 307–313.

    Article  CAS  Google Scholar 

  40. Kotlizky, G., Katz, A., van der Laak, J., Boyko, V., Lapidot, M., Beachy, R. N., et al. (2001). Mol Plant-Microbe Interact, 14, 895–904.

    Article  CAS  Google Scholar 

  41. Lapidot, M., Gafny, R., Ding, B., Wolf, S., Lucas, W. J., & Beachy, R. N. (1993). The Plant Journal, 4, 959–970.

    Article  CAS  Google Scholar 

  42. Li, Y., Song, Y. Z., Zhu, C. X., & Wen, F. J. (2008). Acta Phytopathologica Sinica, 182, 145–155.

    Google Scholar 

  43. Hirai, S., Oka, S., & Adachi, E. (2007). Plant Cell Reports, 26(12), 651–659.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge Li Wei for the kind gift of the bacterial strain HT115. This work was supported by the National Natural Science Foundation of China (No. 30771408) and the Excellent Youth and Middle Age Scientists Fund of Shan Dong Province (No. 2007BS06007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Xiang Zhu or Fu-Jiang Wen.

Additional information

Zhao-Nan Sun and Guo-Hua Yin contributed equally to this paper.

An erratum to this article can be found at http://dx.doi.org/10.1007/s12010-010-8999-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, ZN., Yin, GH., Song, YZ. et al. Bacterially Expressed Double-Stranded RNAs against Hot-Spot Sequences of Tobacco Mosaic Virus or Potato Virus Y Genome Have Different Ability to Protect Tobacco from Viral Infection. Appl Biochem Biotechnol 162, 1901–1914 (2010). https://doi.org/10.1007/s12010-010-8968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8968-2

Keywords

Navigation