Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1889–1900 | Cite as

Cellulases and Xylanases Production by Penicillium echinulatum Grown on Sugar Cane Bagasse in Solid-State Fermentation

  • Marli CamassolaEmail author
  • Aldo J. P. Dillon
Article

Abstract

To investigate the production of cellulases and xylanases from Penicillium echinulatum 9A02S1, solid-state fermentation (SSF) was performed by using different ratios of sugar cane bagasse (SCB) and wheat bran (WB). The greatest filter paper activity obtained was 45.82 ± 1.88 U gdm−1 in a culture containing 6SCB/4WB on the third day. The greatest β-glucosidase activities were 40.13 ± 5.10 U gdm−1 obtained on the third day for the 0SCB/10WB culture and 29.17 ± 1.06 U gdm−1 for the 2SCB/8WB culture. For endoglucanase, the greatest activities were 290.47 ± 43.57 and 276.84 ± 15.47 U gdm−1, for the culture 6SCB/4WB on the fourth and fifth days of cultivation, respectively. The greatest xylanase activities were found on the third day for the cultures 6SCB/4WB (36.38 ± 5.38 U gdm−1) and 4SCB/6WB (37.87 ± 2.26 U gdm−1). In conclusion, the results presented in this article showed that it was possible to obtain large amounts of cellulases and xylanases enzymes using low-cost substrates, such as SCB and WB.

Keywords

Solid-state fermentation Cellulases Xylanases Sugar cane bagasse Second-generation ethanol 

References

  1. 1.
    Chahal, D. S. (1985). Applied and Environmental Microbiology, 49, 205–210.Google Scholar
  2. 2.
    Lonsane, B. K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N. P., et al. (1992). Process Biochemistry, 27, 259–273.CrossRefGoogle Scholar
  3. 3.
    Viniegra-Gonzáles, G., Favela-Torres, E., Aguilar, C. N., Rómero-Gómez, S. J., Diaz-Godínez, G., & Augur, C. (2003). Biochemical Engineering Journal, 13, 157–167.CrossRefGoogle Scholar
  4. 4.
    Soccol, C., & Vandenberghe, L. (2003). Biochemical Engineering Journal, 13, 205–218.CrossRefGoogle Scholar
  5. 5.
    Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.CrossRefGoogle Scholar
  6. 6.
    Cavaco-Paulo, A. (1998). Carbohydrate Polymers, 37, 273–277.CrossRefGoogle Scholar
  7. 7.
    Rau, M., Heidemann, C., Pascoalin, A. M., Ximenes Filho, E., Camassola, M., Dillon, A. J. P., et al. (2008). Biocatalysis and Biotransformation, 26, 383–390.CrossRefGoogle Scholar
  8. 8.
    Mandebvu, P., West, J. W., Froetschel, M. A., Hatfield, R. D., Gates, R. N., & Hill, G. M. (1999). Animal Feed Science and Technology, 77, 317–329.CrossRefGoogle Scholar
  9. 9.
    Camassola, M., & Dillon, A. J. P. (2007). Journal of Applied Microbiology, 102, 478–485.CrossRefGoogle Scholar
  10. 10.
    Gusakov, A. V., Berlin, A. G., Popova, N. N., Okunev, O. N., Sinitsyn, A. O., & Sinitsyn, A. P. (2000). Applied Biochemistry and Biotechnology, 88, 119–126.CrossRefGoogle Scholar
  11. 11.
    Sheehan, J., & Himmel, M. E. (1999). Biotechnology Progress, 15, 817–827.CrossRefGoogle Scholar
  12. 12.
    Camassola, M., & Dillon, A. J. P. (2009). Industrial Crops and Products, 29, 642–647.CrossRefGoogle Scholar
  13. 13.
    Rosillo-Calle, F., & Walter, A. (2006). ESD. X, 18–30.Google Scholar
  14. 14.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  15. 15.
    Camassola, M., & Dillon, A. J. P. (2007). Journal of Applied Microbiology, 103, 2196–2204.CrossRefGoogle Scholar
  16. 16.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  17. 17.
    Dillon, A. J. P., Zorgi, C., Camassola, M., & Henriques, J. A. P. (2006). Applied Microbiology and Biotechnology, 70, 740–746.CrossRefGoogle Scholar
  18. 18.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  19. 19.
    Miller, G. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  20. 20.
    Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1955). The Journal of Biological Chemistry, 27, 959–966.Google Scholar
  21. 21.
    Bittencourt, L. R., Silveira, M. M., & Dillon, A. J. P. (2002). In: VII Simpósio de Hidrólise Enzimática de Biomassas. Brazil: Resumos, pp. 209.Google Scholar
  22. 22.
    Papinutti, V. L., & Forchiassin, F. (2007). Journal of Food Engineering, 81, 54–59.CrossRefGoogle Scholar
  23. 23.
    Jecu, L. (2000). Industrial Crops and Products, 11, 1–5.CrossRefGoogle Scholar
  24. 24.
    Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Enzyme and Microbial Technology, 33, 612–619.CrossRefGoogle Scholar
  25. 25.
    Archana, A., & Satyanarayana, T. (1997). Enzyme and Microbial Technology, 21, 12–17.CrossRefGoogle Scholar
  26. 26.
    Lequart, C., Nuzillard, J.-M., Kurek, B., & Debeire, P. (1999). Carbohydrate Research, 319, 102–111.CrossRefGoogle Scholar
  27. 27.
    Mo, H., Zhang, X., & Li, Z. (2004). Process Biochemistry, 39, 1293–1297.CrossRefGoogle Scholar
  28. 28.
    Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Bioresource Technology, 98, 504–510.CrossRefGoogle Scholar
  29. 29.
    Ramesh, M. V., & Lonsane, B. K. (1991). Applied Microbiology and Biotechnology, 35, 591–593.CrossRefGoogle Scholar
  30. 30.
    Souza, D., Souza, C., & Peralta, R. (2001). Process Biochemistry, 36, 835–838.CrossRefGoogle Scholar
  31. 31.
    Babu, K. R., & Satyanarayana, T. (1995). Process Biochemistry, 30, 305–309.Google Scholar
  32. 32.
    Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., et al. (2003). Process Biochemistry, 38, 1099–1104.CrossRefGoogle Scholar
  33. 33.
    Camassola, M., Bittencourt, L. R., Shenem, N. T., Andreaus, J., & Dillon, A. J. P. (2004). Biocatalysis and Biotransformation, 22, 391–396.CrossRefGoogle Scholar
  34. 34.
    Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Bioresource Technology, 99, 1417–1424.CrossRefGoogle Scholar
  35. 35.
    Botella, C., Diaz, A., de Ory, I., Webb, C., & Blandino, A. (2007). Process Biochemistry, 42, 98–101.CrossRefGoogle Scholar
  36. 36.
    Blandino, A., Iqbalsyah, T., Pandiella, S. S., Cantero, D., & Webb, C. (2002). Applied Microbiology and Biotechnology, 58, 164–169.CrossRefGoogle Scholar
  37. 37.
    Mekala, N. K., Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2008). Applied Biochemistry and Biotechnology, 151, 122–131.CrossRefGoogle Scholar
  38. 38.
    Gutierrez-Correa, M., & Tengerdy, R. P. (1997). Biotechnological Letters, 19, 665–667.CrossRefGoogle Scholar
  39. 39.
    Gutierrez-Correa, M., & Tengerdy, R. P. (1998). Biotechnological Letters, 19, 45–47.CrossRefGoogle Scholar
  40. 40.
    Shamala, T. R., & Sreekantiah, K. R. (1986). Enzyme and Microbial Technology, 8, 178–182.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of BiotechnologyUniversity of Caxias do SulCaxias do SulBrazil

Personalised recommendations