Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1881–1888 | Cite as

Esterification Activity of Novel Fungal and Yeast Lipases

  • Elisandra Rigo
  • André E. Polloni
  • Daniela Remonatto
  • Francieli Arbter
  • Silvana Menoncin
  • J. Vladimir Oliveira
  • Débora de Oliveira
  • Helen TreichelEmail author
  • Susana J. Kalil
  • Jorge L. Ninow
  • Marco Di Luccio


The main objective of this work was the isolation and screening of microorganisms with potential for producing lipases for the synthesis of fatty esters as well as evaluating the specificity of the enzymes produced, using different alcohols (methanol, ethanol, n-propanol, and butanol) and fatty acids (oleic and lauric acids) as substrates. Promising biocatalysts for organic synthesis were obtained in this work. The isolated strains 69F and 161Y showed ability to efficiently catalyze the reaction for production of n-propyl oleate. Other strains can also be considered of potential interest, as 74F, 111Y, and 186Y. The future development of production using different substrates could result in cheap crude lipase of high importance to industrial applicability.


Lipase Microorganism screening Synthesis activity Esterification 



The authors thank CAPES/PROCAD, CNPq, and Intecnial for the financial support of this work and scholarships.


  1. 1.
    Sharma, R., Chisti, Y., & Banerjee, U. C. (2000). Biotechnology Advances, 19, 627–662.CrossRefGoogle Scholar
  2. 2.
    Ruiz, A. M., Garcia, H. S., Castañeda, G. S., & Torres, E. F. (2008). Applied Biochemistry and Biotechnology, 151, 393–401.CrossRefGoogle Scholar
  3. 3.
    Ko, W. H., Wang, I. T., & Ann, P. J. (2005). Soil Biology and Biochemistry, 37, 597–599.CrossRefGoogle Scholar
  4. 4.
    Björkling, F., Godtfedsen, S. E., & Kirk, O. (1991). Trends in Biotechnology, 9, 360–363.CrossRefGoogle Scholar
  5. 5.
    Cardenas, F., Alvarez, E., Castro-Alvarez, M. S., & Sanchez-Montero, J. M. (2001). Journal of Molecular Catalysis B: Enzymatic, 14, 111–123.CrossRefGoogle Scholar
  6. 6.
    Kim, J. T., Kang, S. G., Woo, J. H., Lee, J.-H., Jeong, B. C., & Kim, S.-J. (2007). Applied Microbiology and Biotechnology, 74, 820–828.CrossRefGoogle Scholar
  7. 7.
    Rodriguez, J. A., Mateos, J. C., Nungaray, J., González, V., Bhagnagar, T., Roussos, S., et al. (2006). Process Biochemistry, 41, 2264–2269.CrossRefGoogle Scholar
  8. 8.
    Nagy, V., Toke, E. R., Keong, L. C., Szatzker, G., Ibrahim, D., Omar, I. C., et al. (2006). Journal of Molecular Catalysis B: Enzymatic, 39, 141–148.CrossRefGoogle Scholar
  9. 9.
    Dutra, J. C. V., Terzi, S. C., Bevilaqua, J. V., Damaso, M. C. T., Couri, S., Langone, M. A. P., et al. (2008). Applied Biochemistry and Biotechnology, 147, 63–75.CrossRefGoogle Scholar
  10. 10.
    Fernandes, M. L. M., Saad, E. B., Meira, J. A., Ramos, L. P., Mitchell, D. A., & Krieger, N. (2007). Journal of Molecular Catalysis B: Enzymatic, 44, 8–13.CrossRefGoogle Scholar
  11. 11.
    Vargas, G. D. L. P., Treichel, H., Oliveira, D., Benetti, S. C., Freire, D. M. G., & Di Luccio, M. (2008). Journal of Chemical Technology and Biotechnology, 83, 47–54.CrossRefGoogle Scholar
  12. 12.
    Vardanega, R., Remonatto, D., Arbter, F., Polloni, A., Rigo, E., Ninow, J. L., et al. (2009). Food Bioproc. Technol. doi: 10.1007/s11947-009-0224-9, in press.
  13. 13.
    Kempka, A. P., Lipke, N. L., Pinheiro, T. L. F., Menoncin, S., Treichel, H., Freire, D. M. G., et al. (2008). Bioprocess and Biosystems Engineering, 31, 119–125.CrossRefGoogle Scholar
  14. 14.
    Persson, M., Mladenoska, I., Wehtje, E., & Adlercreutz, P. (2002). Enzyme and Microbial Technology, 31, 833–841.CrossRefGoogle Scholar
  15. 15.
    Oliveira, D., Feihrmann, A. C., Rubira, A. F., Kunita, M. H., Dariva, C., & Oliveira, J. V. (2006). Journal of Supercritical Fluids, 38, 127–133.CrossRefGoogle Scholar
  16. 16.
    Freire, D. M. G., Gomes, P. M., Bom, E. P. S., & Sant'Anna, G. L., Jr. (1997). Applied Biochemistry and Biotechnology, 63, 409–421.CrossRefGoogle Scholar
  17. 17.
    Salah, R. B., Ghamghui, H., Miled, N., Mejdoub, H., & Gargouri, Y. (2007). Journal of Bioscience and Bioengineering, 4, 368–372.CrossRefGoogle Scholar
  18. 18.
    Sun, S. Y., & Xu, Y. (2008). Process Biochemistry, 43, 219–224.CrossRefGoogle Scholar
  19. 19.
    Luo, Y., Zhengbing, J., Ma, Y., & Wei, D. (2006). Applied Microbiology and Biotechnology, 73, 349–355.CrossRefGoogle Scholar
  20. 20.
    Ibrahim, C. O. (2008). Bioresource Technology, 99, 4572–4582.Google Scholar
  21. 21.
    Romero, C. M., Baigori, M. D., & Pera, L. M. (2007). Applied Microbiology and Biotechnology, 76, 861–866.CrossRefGoogle Scholar
  22. 22.
    Kraai, G. N., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2008). Biochemical Engineering Journal, 41, 87–94.CrossRefGoogle Scholar
  23. 23.
    Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Journal of Molecular Catalysis B: Enzymatic, 17, 133–142.CrossRefGoogle Scholar
  24. 24.
    Fukuda, H., Kondo, A., & Noda, H. (2001). Journal of Bioscience and Bioengineering, 92, 405–416.CrossRefGoogle Scholar
  25. 25.
    Karadzic, I., Masui, A., & Zivkovic, L. I. (2006). Journal of Bioscience and Bioengineering, 102, 82–89.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elisandra Rigo
    • 1
  • André E. Polloni
    • 2
  • Daniela Remonatto
    • 2
  • Francieli Arbter
    • 2
  • Silvana Menoncin
    • 3
  • J. Vladimir Oliveira
    • 2
  • Débora de Oliveira
    • 2
  • Helen Treichel
    • 2
    Email author
  • Susana J. Kalil
    • 3
  • Jorge L. Ninow
    • 1
  • Marco Di Luccio
    • 2
  1. 1.Departamento de Engenharia Química e de AlimentosUniversidade Federal de Santa Catarina, UFSCFlorianópolisBrazil
  2. 2.Programa de Pós-Graduação em Engenharia de AlimentosUniversidade Regional Integrada do Alto Uruguai e das Missões, Campus de ErechimErechimBrazil
  3. 3.Departamento de QuímicaCurso de Pós-Graduação em Engenharia e Ciência de Alimentos, Universidade Federal do Rio Grande, FURGRio GrandeBrazil

Personalised recommendations