Skip to main content

Advertisement

Log in

Influence of Different Substrates on the Production of a Mutant Thermostable Glucoamylase in Submerged Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Three mutations, Ser54→Pro, Thr314→Ala, and His415→Tyr, were identified in Aspergillus awamori glucoamylase gene expressed by Saccharomyces cerevisiae. The mutant glucoamylase (GA) was substantially more thermostable than a wild-type GA at 70 °C, with a 3.0 KJ mol−1 increase in the free energy of thermo-inactivation. The effect of starch from different botanical sources on the production of this GA was measured in liquid fermentation using commercial soluble starch, cassava, potato, and corn as the carbon source. The best substrate for GA production was the potato starch showing an enzymatic activity of 6.6 U/mL. The commercial soluble starch was also a good substrate for the enzyme production with 6.3 U/mL, followed by cassava starch and corn starch with 5.9 and 3.0 U/mL, respectively. These results showed a significant difference on GA production related to the carbon source employed. The mutant GA was purified by acarbose–Sepharose affinity chromatography; the estimated molecular mass was 100 kDa. The mutant GA exhibited optimum activity at pH 4.5 and an optimum temperature of 65 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roy, I., & Gupta, M. N. (2004). Enzyme and Microbial Technology, 34, 26–32.

    Article  CAS  Google Scholar 

  2. Uthumporn, U., Zaidul, I. S. M., & Karim, A. A. (2010). Food and Bioproducts Processing, 88, 47–54.

    Article  CAS  Google Scholar 

  3. Mertens, J. A., & Skory, C. D. (2007). Enzyme and Microbial Technology, 40, 874–880.

    Article  CAS  Google Scholar 

  4. Michelin, M., Ruller, R., Ward, R. J., Moraes, L. A. B., Jorge, J. A., Terenzi, H. F., et al. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 17–25.

    Article  CAS  Google Scholar 

  5. McDaniel, A., Fuchs, E., Liu, Y., & Ford, C. (2008). Microbial Technology, 1(6), 523–531.

    CAS  Google Scholar 

  6. Wang, Y., Fuchs, E., da Silva, R., McDaniel, A., Seibel, J., & Ford, C. (2006). Starch/Stärke, 58, 501–508.

    Article  CAS  Google Scholar 

  7. James, J. A., & Lee, B. H. (1997). Journal of Food Biochemistry, 21, 1–52.

    Article  CAS  Google Scholar 

  8. Ford, C. (1999). Current Opinion in Biotechnology, 10, 353–357.

    Article  CAS  Google Scholar 

  9. Liu, H.-L., & Wang, W.-C. (2003). Protein Engineering, 16, 19–25.

    Article  Google Scholar 

  10. Kilonzo, P. M., Margaritis, A., & Bergougnou, M. A. (2009). Journal of Biotechnology, 143, 60–68.

    Article  CAS  Google Scholar 

  11. Naessens, M., & Vandamme, E. J. (2003). Biotechnological Letters, 25, 1119–1124.

    Article  CAS  Google Scholar 

  12. Swift, R. J., Karandikar, A., Griffen, A. M., Punt, P. J., Hondel, C. A. M. J. J., Robson, G. D., et al. (2000). Fungal Genetics and Biology, 32, 125–133.

    Article  Google Scholar 

  13. Peres, M. F. S., Souza, C. S., Thomaz, D., de Souza, A. R., & Laluce, C. (2006). Process Biochemistry, 41, 77–83.

    Article  Google Scholar 

  14. Pavezzi, F. C., Gomes, E., & da Silva, R. (2008). Brazilian Journal of Microbiology, 39, 108–114.

    Article  Google Scholar 

  15. Lemos, C. M. (2003). M.Sc. Dissertation, UNESP, Rio Claro, Brazil.

  16. Hoffmam, C. S., & Winston, F. (1987). Gene, 57, 267–272.

    Article  Google Scholar 

  17. Bergmeyer, H. U., & Bernt, E. (1974). Methods of enzymatic analysis. Methods, 3, 1205–1215.

    Google Scholar 

  18. Hartree, E. F. (1972). Analytical Biochemistry, 48, 422–427.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Blum, H., Bier, H., & Gross, H. J. (1987). Eletrophoresis, 8(2), 93–99.

    Article  CAS  Google Scholar 

  21. Chen, H. M., Bakir, U., Reilly, P. C., & Ford, C. (1994). Biotechnology and Bioengineering, 43, 101–105.

    Article  CAS  Google Scholar 

  22. Leite, R. S. R., Alves-Prado, H. F., Cabral, H., Pagnocca, F. C., Gomes, E., & Da Silva, R. (2008). Enzyme and Microbial Technology, 43, 391–395.

    Article  CAS  Google Scholar 

  23. Suzuki, Y., Hatagaki, K., & Oda, H. (1991). Applied Microbiology and Biotechnology, 34, 707–714.

    Article  CAS  Google Scholar 

  24. Liu, H.-L., Doleyres, Y., Coutinho, P. M., Ford, C., & Reilly, P. J. (2000). Protein Engineering, 13, 655–659.

    Article  CAS  Google Scholar 

  25. Li, Y., Reilly, P. J., & Ford, C. (1997). Protein Engineering, 10, 1199–1204.

    Article  CAS  Google Scholar 

  26. Allen, M. J., Coutinho, P. M., & Ford, C. (1998). Protein Engineering, 11, 783–788.

    Article  CAS  Google Scholar 

  27. Gomes, E., Guez, M. A. U., Martin, N., & da Silva, R. (2007). Química Nova, 30, 136–145.

    Article  CAS  Google Scholar 

  28. Li, Y., Coutinho, P. M., & Ford, C. (1998). Protein Engineering, 11, 661–667.

    Article  CAS  Google Scholar 

  29. Chen, H. M., Li, Y., Panda, T., Buehler, F. U., Ford, C., & Reilly, P. J. (1996). Protein Engineering, 9, 499–505.

    Article  CAS  Google Scholar 

  30. Norouzian, D., Akbarzadeh, A., Scharer, J. M., & Young, M. M. (2006). Research Review Paper, 24, 80–85.

    CAS  Google Scholar 

  31. Anto, H., Trivedi, U. B., & Patel, K. C. (2006). Bioresource Technology, 97, 1161–1166.

    Article  CAS  Google Scholar 

  32. Hata, Y., Ishida, H., Kojima, Y., Ichikawa, E., Kawato, A., Suginami, K., et al. (1997). Journal of Fermentation Bioengineering, 84, 532–537.

    Article  CAS  Google Scholar 

  33. Munch, O., & Tritsch, D. (1990). Biochimica et Biophysica Acta, 1041, 111–116.

    Article  CAS  Google Scholar 

  34. Bruins, M. E., Janssen, A. E. M., & Boom, R. M. (2001). Applied Biochemistry and Biotechnology, 90, 155–181.

    Article  CAS  Google Scholar 

  35. Flory, N., Gorman, M., Coutinho, P. M., Ford, C., & Reilly, P. J. (1994). Protein Engineering, 7, 1005–1012.

    Article  CAS  Google Scholar 

  36. Carrea, G., & Colombo, G. (2000). Trends in Biotechnology, 18, 401–402.

    Article  CAS  Google Scholar 

  37. Bakir, U., Coutinho, P. M., Sullivan, P. A., Ford, C., & Reilly, P. J. (1993). Protein Engineering, 6, 939–946.

    Article  CAS  Google Scholar 

  38. Withers, J. M., Swift, R. J., Wiebe, M. G., Robson, G. D., Punt, P. J., van den Hondel, C. A. M. J. J., et al. (1998). Biotechnology and Bioengineering, 59, 407–418.

    Article  CAS  Google Scholar 

  39. Latorre-Garcia, L., Adam, A. C., & Polaina, J. (2008). World Journal of Microbiology & Biotechnology, 24, 2957–2963.

    Article  CAS  Google Scholar 

  40. Vanomi, M., Lotti, M., & Alberghina, L. (1989). Biochimica et Biophysica Acta, 1008, 168–176.

    Google Scholar 

  41. Ghang, D. M., Yu, L., Lim, M. H., Ko, H. M., Im, S. Y., Lee, H. B., et al. (2007). Biotechnological Letters, 29, 1203–1208.

    Article  CAS  Google Scholar 

  42. González, C. F., Fariña, J. I., & de Figueroa, L. I. C. (2008). Enzyme and Microbial Technology, 42, 272–277.

    Article  Google Scholar 

  43. Kilonzo, P. M., Margaritis, A., & Bergougnou, M. A. (2008). Journal of Biotechnology, 114(2), 83–95.

    CAS  Google Scholar 

  44. Slavik, J., & Kotyk, A. (1984). Biochimica et Biophysica Acta, 766(3), 679–684.

    Article  CAS  Google Scholar 

  45. Watanabe, T., Furukawa, S., Kitamoto, K., Takatsuki, A., Hirata, R., Ogihara, H., et al. (2005). International Journal of Food Microbiology, 105, 131–137.

    Article  CAS  Google Scholar 

  46. Piper, P., Calderon, C. O., Hatzixanthis, K., & Mollapour, M. (2001). Microbiology, 147, 2635–2642.

    CAS  Google Scholar 

  47. Schuller, C., Schüller, C., Mamnun, Y. M., Mollapour, M., Krapf, G., Schuster, M., et al. (2004). Molecular Biology of the Cell, 15, 706–720.

    Article  Google Scholar 

  48. Giannattasioa, S., Guaragnellaa, N., Corte-Realb, M., Passarellac, S., & Marraa, E. (2005). Gen, 354, 93–98.

    Article  Google Scholar 

  49. Brul, S., & Coote, P. (1999). International Journal of Food Microbiology, 50, 1–17.

    Article  CAS  Google Scholar 

  50. Halm, M., Hornbaek, T., Arneborg, N., Sefa-Dedeh, S., & Jespersen, L. (2004). International Journal of Food Microbiology, 94, 97–103.

    Article  CAS  Google Scholar 

  51. Vihinen, M., & Mantsala, P. (1989). Critical Reviews in Biochemistry and Molecular Biology, 24, 329–418.

    Article  CAS  Google Scholar 

  52. Zidehsaraei, A. Z., Moshkelani, M., & Amiri, M. C. (2009). Separation and Purification Technology, 67, 8–13.

    Article  CAS  Google Scholar 

  53. Ouyang, A., Benneu, P., Zhang, A., & Yang, S. T. (2007). Process Biochemistry, 42, 561–569.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Pesquisa (CNPq) for their financial support. We are also gratefull to Dr. Clark Ford from Iowa State University for his teachings in this area and for donating our firts mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavezzi, F.C., Carneiro, A.A.J., Bocchini-Martins, D.A. et al. Influence of Different Substrates on the Production of a Mutant Thermostable Glucoamylase in Submerged Fermentation. Appl Biochem Biotechnol 163, 14–24 (2011). https://doi.org/10.1007/s12010-010-8963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8963-7

Keywords

Navigation