Advertisement

Applied Biochemistry and Biotechnology

, Volume 163, Issue 1, pp 14–24 | Cite as

Influence of Different Substrates on the Production of a Mutant Thermostable Glucoamylase in Submerged Fermentation

  • Fabiana Carina Pavezzi
  • Andréia A. Jacomassi Carneiro
  • Daniela Alonso Bocchini-Martins
  • Heloiza Ferreira Alves-Prado
  • Henrique Ferreira
  • Paula M. Martins
  • Eleni Gomes
  • Roberto da SilvaEmail author
Article

Abstract

Three mutations, Ser54→Pro, Thr314→Ala, and His415→Tyr, were identified in Aspergillus awamori glucoamylase gene expressed by Saccharomyces cerevisiae. The mutant glucoamylase (GA) was substantially more thermostable than a wild-type GA at 70 °C, with a 3.0 KJ mol−1 increase in the free energy of thermo-inactivation. The effect of starch from different botanical sources on the production of this GA was measured in liquid fermentation using commercial soluble starch, cassava, potato, and corn as the carbon source. The best substrate for GA production was the potato starch showing an enzymatic activity of 6.6 U/mL. The commercial soluble starch was also a good substrate for the enzyme production with 6.3 U/mL, followed by cassava starch and corn starch with 5.9 and 3.0 U/mL, respectively. These results showed a significant difference on GA production related to the carbon source employed. The mutant GA was purified by acarbose–Sepharose affinity chromatography; the estimated molecular mass was 100 kDa. The mutant GA exhibited optimum activity at pH 4.5 and an optimum temperature of 65 °C.

Keywords

Mutant glucoamylase Thermostable enzyme Production Purification Corn starch Potato starch Cassava starch Thermo-inactivation 

Notes

Acknowledgments

The authors are grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Pesquisa (CNPq) for their financial support. We are also gratefull to Dr. Clark Ford from Iowa State University for his teachings in this area and for donating our firts mutants.

References

  1. 1.
    Roy, I., & Gupta, M. N. (2004). Enzyme and Microbial Technology, 34, 26–32.CrossRefGoogle Scholar
  2. 2.
    Uthumporn, U., Zaidul, I. S. M., & Karim, A. A. (2010). Food and Bioproducts Processing, 88, 47–54.CrossRefGoogle Scholar
  3. 3.
    Mertens, J. A., & Skory, C. D. (2007). Enzyme and Microbial Technology, 40, 874–880.CrossRefGoogle Scholar
  4. 4.
    Michelin, M., Ruller, R., Ward, R. J., Moraes, L. A. B., Jorge, J. A., Terenzi, H. F., et al. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 17–25.CrossRefGoogle Scholar
  5. 5.
    McDaniel, A., Fuchs, E., Liu, Y., & Ford, C. (2008). Microbial Technology, 1(6), 523–531.Google Scholar
  6. 6.
    Wang, Y., Fuchs, E., da Silva, R., McDaniel, A., Seibel, J., & Ford, C. (2006). Starch/Stärke, 58, 501–508.CrossRefGoogle Scholar
  7. 7.
    James, J. A., & Lee, B. H. (1997). Journal of Food Biochemistry, 21, 1–52.CrossRefGoogle Scholar
  8. 8.
    Ford, C. (1999). Current Opinion in Biotechnology, 10, 353–357.CrossRefGoogle Scholar
  9. 9.
    Liu, H.-L., & Wang, W.-C. (2003). Protein Engineering, 16, 19–25.CrossRefGoogle Scholar
  10. 10.
    Kilonzo, P. M., Margaritis, A., & Bergougnou, M. A. (2009). Journal of Biotechnology, 143, 60–68.CrossRefGoogle Scholar
  11. 11.
    Naessens, M., & Vandamme, E. J. (2003). Biotechnological Letters, 25, 1119–1124.CrossRefGoogle Scholar
  12. 12.
    Swift, R. J., Karandikar, A., Griffen, A. M., Punt, P. J., Hondel, C. A. M. J. J., Robson, G. D., et al. (2000). Fungal Genetics and Biology, 32, 125–133.CrossRefGoogle Scholar
  13. 13.
    Peres, M. F. S., Souza, C. S., Thomaz, D., de Souza, A. R., & Laluce, C. (2006). Process Biochemistry, 41, 77–83.CrossRefGoogle Scholar
  14. 14.
    Pavezzi, F. C., Gomes, E., & da Silva, R. (2008). Brazilian Journal of Microbiology, 39, 108–114.CrossRefGoogle Scholar
  15. 15.
    Lemos, C. M. (2003). M.Sc. Dissertation, UNESP, Rio Claro, Brazil.Google Scholar
  16. 16.
    Hoffmam, C. S., & Winston, F. (1987). Gene, 57, 267–272.CrossRefGoogle Scholar
  17. 17.
    Bergmeyer, H. U., & Bernt, E. (1974). Methods of enzymatic analysis. Methods, 3, 1205–1215.Google Scholar
  18. 18.
    Hartree, E. F. (1972). Analytical Biochemistry, 48, 422–427.CrossRefGoogle Scholar
  19. 19.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  20. 20.
    Blum, H., Bier, H., & Gross, H. J. (1987). Eletrophoresis, 8(2), 93–99.CrossRefGoogle Scholar
  21. 21.
    Chen, H. M., Bakir, U., Reilly, P. C., & Ford, C. (1994). Biotechnology and Bioengineering, 43, 101–105.CrossRefGoogle Scholar
  22. 22.
    Leite, R. S. R., Alves-Prado, H. F., Cabral, H., Pagnocca, F. C., Gomes, E., & Da Silva, R. (2008). Enzyme and Microbial Technology, 43, 391–395.CrossRefGoogle Scholar
  23. 23.
    Suzuki, Y., Hatagaki, K., & Oda, H. (1991). Applied Microbiology and Biotechnology, 34, 707–714.CrossRefGoogle Scholar
  24. 24.
    Liu, H.-L., Doleyres, Y., Coutinho, P. M., Ford, C., & Reilly, P. J. (2000). Protein Engineering, 13, 655–659.CrossRefGoogle Scholar
  25. 25.
    Li, Y., Reilly, P. J., & Ford, C. (1997). Protein Engineering, 10, 1199–1204.CrossRefGoogle Scholar
  26. 26.
    Allen, M. J., Coutinho, P. M., & Ford, C. (1998). Protein Engineering, 11, 783–788.CrossRefGoogle Scholar
  27. 27.
    Gomes, E., Guez, M. A. U., Martin, N., & da Silva, R. (2007). Química Nova, 30, 136–145.CrossRefGoogle Scholar
  28. 28.
    Li, Y., Coutinho, P. M., & Ford, C. (1998). Protein Engineering, 11, 661–667.CrossRefGoogle Scholar
  29. 29.
    Chen, H. M., Li, Y., Panda, T., Buehler, F. U., Ford, C., & Reilly, P. J. (1996). Protein Engineering, 9, 499–505.CrossRefGoogle Scholar
  30. 30.
    Norouzian, D., Akbarzadeh, A., Scharer, J. M., & Young, M. M. (2006). Research Review Paper, 24, 80–85.Google Scholar
  31. 31.
    Anto, H., Trivedi, U. B., & Patel, K. C. (2006). Bioresource Technology, 97, 1161–1166.CrossRefGoogle Scholar
  32. 32.
    Hata, Y., Ishida, H., Kojima, Y., Ichikawa, E., Kawato, A., Suginami, K., et al. (1997). Journal of Fermentation Bioengineering, 84, 532–537.CrossRefGoogle Scholar
  33. 33.
    Munch, O., & Tritsch, D. (1990). Biochimica et Biophysica Acta, 1041, 111–116.CrossRefGoogle Scholar
  34. 34.
    Bruins, M. E., Janssen, A. E. M., & Boom, R. M. (2001). Applied Biochemistry and Biotechnology, 90, 155–181.CrossRefGoogle Scholar
  35. 35.
    Flory, N., Gorman, M., Coutinho, P. M., Ford, C., & Reilly, P. J. (1994). Protein Engineering, 7, 1005–1012.CrossRefGoogle Scholar
  36. 36.
    Carrea, G., & Colombo, G. (2000). Trends in Biotechnology, 18, 401–402.CrossRefGoogle Scholar
  37. 37.
    Bakir, U., Coutinho, P. M., Sullivan, P. A., Ford, C., & Reilly, P. J. (1993). Protein Engineering, 6, 939–946.CrossRefGoogle Scholar
  38. 38.
    Withers, J. M., Swift, R. J., Wiebe, M. G., Robson, G. D., Punt, P. J., van den Hondel, C. A. M. J. J., et al. (1998). Biotechnology and Bioengineering, 59, 407–418.CrossRefGoogle Scholar
  39. 39.
    Latorre-Garcia, L., Adam, A. C., & Polaina, J. (2008). World Journal of Microbiology & Biotechnology, 24, 2957–2963.CrossRefGoogle Scholar
  40. 40.
    Vanomi, M., Lotti, M., & Alberghina, L. (1989). Biochimica et Biophysica Acta, 1008, 168–176.Google Scholar
  41. 41.
    Ghang, D. M., Yu, L., Lim, M. H., Ko, H. M., Im, S. Y., Lee, H. B., et al. (2007). Biotechnological Letters, 29, 1203–1208.CrossRefGoogle Scholar
  42. 42.
    González, C. F., Fariña, J. I., & de Figueroa, L. I. C. (2008). Enzyme and Microbial Technology, 42, 272–277.CrossRefGoogle Scholar
  43. 43.
    Kilonzo, P. M., Margaritis, A., & Bergougnou, M. A. (2008). Journal of Biotechnology, 114(2), 83–95.Google Scholar
  44. 44.
    Slavik, J., & Kotyk, A. (1984). Biochimica et Biophysica Acta, 766(3), 679–684.CrossRefGoogle Scholar
  45. 45.
    Watanabe, T., Furukawa, S., Kitamoto, K., Takatsuki, A., Hirata, R., Ogihara, H., et al. (2005). International Journal of Food Microbiology, 105, 131–137.CrossRefGoogle Scholar
  46. 46.
    Piper, P., Calderon, C. O., Hatzixanthis, K., & Mollapour, M. (2001). Microbiology, 147, 2635–2642.Google Scholar
  47. 47.
    Schuller, C., Schüller, C., Mamnun, Y. M., Mollapour, M., Krapf, G., Schuster, M., et al. (2004). Molecular Biology of the Cell, 15, 706–720.CrossRefGoogle Scholar
  48. 48.
    Giannattasioa, S., Guaragnellaa, N., Corte-Realb, M., Passarellac, S., & Marraa, E. (2005). Gen, 354, 93–98.CrossRefGoogle Scholar
  49. 49.
    Brul, S., & Coote, P. (1999). International Journal of Food Microbiology, 50, 1–17.CrossRefGoogle Scholar
  50. 50.
    Halm, M., Hornbaek, T., Arneborg, N., Sefa-Dedeh, S., & Jespersen, L. (2004). International Journal of Food Microbiology, 94, 97–103.CrossRefGoogle Scholar
  51. 51.
    Vihinen, M., & Mantsala, P. (1989). Critical Reviews in Biochemistry and Molecular Biology, 24, 329–418.CrossRefGoogle Scholar
  52. 52.
    Zidehsaraei, A. Z., Moshkelani, M., & Amiri, M. C. (2009). Separation and Purification Technology, 67, 8–13.CrossRefGoogle Scholar
  53. 53.
    Ouyang, A., Benneu, P., Zhang, A., & Yang, S. T. (2007). Process Biochemistry, 42, 561–569.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fabiana Carina Pavezzi
    • 1
    • 2
  • Andréia A. Jacomassi Carneiro
    • 1
    • 2
  • Daniela Alonso Bocchini-Martins
    • 1
  • Heloiza Ferreira Alves-Prado
    • 3
  • Henrique Ferreira
    • 4
  • Paula M. Martins
    • 2
    • 4
  • Eleni Gomes
    • 1
  • Roberto da Silva
    • 1
    Email author
  1. 1.Biochemistry and Applied Microbiology LaboratoryUNESP–São Paulo State UniversitySão José do Rio PretoBrazil
  2. 2.Biology InstituteUNESP–São Paulo State UniversityRio ClaroBrazil
  3. 3.Food and Tecnology Department-DFTASEUNESP–São Paulo State UniversityIlha SolteiraBrazil
  4. 4.Biology Departament, University of Pharmaceutical SciencesUNESP–São Paulo State UniversityAraraquaraBrazil

Personalised recommendations