Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1834–1846 | Cite as

Purification and Kinetic Properties of Human Recombinant Dihydrofolate Reductase Produced in Bombyx mori Chrysalides

  • Soledad Chazarra
  • Salvador Aznar-Cervantes
  • Luis Sánchez-del-Campo
  • Juan Cabezas-Herrera
  • Wu Xiaofeng
  • José Luis CenisEmail author
  • José Neptuno Rodríguez-LópezEmail author
Article

Abstract

Recent reports describe the inhibition of human dihydrofolate reductase (hDHFR) by natural tea polyphenols. This finding could explain the epidemiologic data on their prophylactic effects for certain forms of cancer, and it raises the possibility that natural and synthetic polyphenols could be used in cancer chemotherapy. In order to obtain larger quantities of hDHFR to support structural studies, we established and validated a baculovirus system for the expression of this protein in Bombyx mori chrysalides (pupae of the silkworm enclosed in a cocoon). To isolate the expressed protein, whole infected pupae were homogenized, and the expressed protein was purified by affinity chromatography. Here, we demonstrate the efficient expression of recombinant hDHFR in this model and report that this newly expressed protein has high enzymatic activity and kinetic properties similar to those previously reported for recombinant hDHFR expressed in Escherichia coli. The purified protein showed dissociation constants for the binding of natural polyphenols similar to that expressed in E. coli, which ensures its usage as a new tool for further structural studies. Although the hDHFR yield per individual was found to be lower in the chrysalides than in the larvae of B. mori, the former system was optimized as a model for the scaled-up production of recombinant proteins. Expression of proteins in chrysalides (instead of larvae) could offer important advantages from both economic and biosecurity aspects.

Keywords

Dihydrofolate reductase Bombyx mori Chrysalides Baculovirus Protein expression 

Notes

Acknowledgments

This work was supported in part by grants from Fundación Séneca (Project 08595/PI/08) and Conserjería de Educación, Ciencia e Investigación (Comunidad Autónoma de Murcia; Project BIO-BMC 07/03-009). L.S.-d.-C. has a contract from the Conserjería de Educación, Ciencia e Investigación (Comunidad Autónoma de Murcia; Project BIO-BMC 07/03-009), and S.C. is contracted by the programme Torres-Quevedo from the Ministerio de Ciencia e Innovación (Spain). The authors thank Alejandro Torrecillas from the Laboratorio Integrado de Biologia Molecular (Servicio de Apoyo a la Investigacion, Universidad de Murcia) by his help in the proteomic experiments (tryptic digestion and further HPLC/MS analysis).

References

  1. 1.
    Lockshin, A., Moran, R. G., & Danenberg, P. V. (1979). Proceedings of the National Academy of Sciences, 76, 750–754.CrossRefGoogle Scholar
  2. 2.
    Blakley, R. L. (1969). The biochemistry of folic acid and related pteridines. New York: Elsevier.Google Scholar
  3. 3.
    Appleman, J. R., Beard, W. A., Delcamp, T. J., Prendergast, N. J., Freisheim, J. H., & Blakley, R. L. (1989). The Journal of Biological Chemistry, 264, 625–2633.Google Scholar
  4. 4.
    Lewis, W. S., Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Chunduru, S. K., et al. (1995). The Journal of Biological Chemistry, 270, 5057–5064.CrossRefGoogle Scholar
  5. 5.
    Schnell, J. R., Dyson, H. J., & Wright, P. E. (2004). Annual Review of Biophysics and Biomolecular Structure, 33, 119–140.CrossRefGoogle Scholar
  6. 6.
    Navarro-Perán, E., Cabezas-Herrera, J., García-Cánovas, F., Durrant, M. C., Thorneley, R. N. F., & Rodríguez-López, J. N. (2005). Cancer Research, 65, 2059–2064.CrossRefGoogle Scholar
  7. 7.
    Mabe, K., Yamada, M., Oguni, I., & Takahashi, T. (1999). Antimicrobial Agents Chemotherapy, 43, 1788–1791.Google Scholar
  8. 8.
    Hamilton-Miller, J. M. T. (2001). Journal of Medical Microbiology, 50, 299–302.Google Scholar
  9. 9.
    Mukhtar, H., & Ahmad, N. (2000). American Journal of Clinical Nutrition, 71, 1698S–1702S.Google Scholar
  10. 10.
    Navarro-Perán, E., Cabezas-Herrera, J., Sánchez-de-l-Campo, L., & Rodríguez-López, J. N. (2007). The International Journal of Biochemistry and Cell Biology, 39, 2215–2225.CrossRefGoogle Scholar
  11. 11.
    Navarro-Perán, E., Cabezas-Herrera, J., Hiner, A. N. P., Sadunishvili, T., García-Cánovas, F., & Rodríguez-López, J. N. (2005). Biochemistry, 44, 7512–7525.CrossRefGoogle Scholar
  12. 12.
    Xiaofeng, W., Yin, Z. Z., Cao, C. P., Huang, L., Lu, X. M., Liu, J. X., et al. (2004). Journal of Biotechnology, 111, 253–261.CrossRefGoogle Scholar
  13. 13.
    Gentilomi, G., Lelli, R., D'Angelo, M., Langella, V., Monaco, F., Portanti, O., et al. (2006). New Microbiologica, 29, 19–24.Google Scholar
  14. 14.
    Okano, F., Satoh, M., Ido, T., Okamoto, N., & Yamada, K. (2000). Journal of Interferon and Cytokine Research, 20, 1015–1022.CrossRefGoogle Scholar
  15. 15.
    Na, Z., Huipeng, Y., Lipan, L., Cuiping, C., Umashankar, M. L., Xingmeng, L., et al. (2008). Applied Microbiology and Biotechnology, 78, 221–226.CrossRefGoogle Scholar
  16. 16.
    Jeefrey, L. C., & Charles, S. C. (1996). Protein engineering. Insect cell expression technology (pp. 183–218). New York: Wiley.Google Scholar
  17. 17.
    Mikhailov, V. S., Zemskov, E. A., & Abramova, E. B. (1992). Journal of General Virology, 73, 3195–3202.CrossRefGoogle Scholar
  18. 18.
    Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., & Park, E. Y. (2005). Biochemical and Biophysical Research Communications, 326, 564–569.CrossRefGoogle Scholar
  19. 19.
    Yaozhou, Z., Jian, C., Zhengbing, L., Zuoming, N., Xiaoyan, Z., & Xiangfu, W. (2006). European Journal of Pharmaceutical Sciences, 28, 212–223.CrossRefGoogle Scholar
  20. 20.
    Hiraki, T., Shibayama, N., Yoon, Y. H., Yun, K. M., Hamamoto, T., Tame, J. R. H., et al. (2007). Acta Crystalographica, F63, 734–736.Google Scholar
  21. 21.
    Cuiping, C., Xingmeng, L., Na, Z., Huipeng, Y., Xiaofeng, W., & Yeping, T. (2006). Current Science, 91, 1692–1697.Google Scholar
  22. 22.
    Hink, W. F., & Vail, P. V. (1973). Journal of Invertebrate Pathology, 22, 168–174.CrossRefGoogle Scholar
  23. 23.
    Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Analytical Chemistry, 68, 850–858.CrossRefGoogle Scholar
  24. 24.
    Cornish-Bowden, A. (1979). In: Fundamentals of enzyme kinetics (pp. 34-37). London: Butterworth and Co.Google Scholar
  25. 25.
    Marquardt, D. W. (1963). Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.CrossRefGoogle Scholar
  26. 26.
    Williams, J. W., Morrison, J. F., & Duggleby, R. G. (1979). Biochemistry, 18, 2567–2573.CrossRefGoogle Scholar
  27. 27.
    Birdsall, B., Burgen, A. S. V., Rodrigues de Miranda, J., & Roberts, G. C. K. (1978). Biochemistry, 17, 2102–2110.CrossRefGoogle Scholar
  28. 28.
    Nagaya, H., Muneta, Y., Enomoto, C., Matsumoto, S., Yokomizo, Y., & Mori, Y. (2004). Biotechnology Letters, 26, 869–873.CrossRefGoogle Scholar
  29. 29.
    Prendergast, N. J., Delcamp, T. J., Smith, P. L., & Freisheim, J. H. (1988). Biochemistry, 27, 3664–3671.CrossRefGoogle Scholar
  30. 30.
    Cody, V., Mao, Q., & Queener, S. F. (2008). Protein Expression and Purification, 62, 104–110.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Soledad Chazarra
    • 1
  • Salvador Aznar-Cervantes
    • 2
  • Luis Sánchez-del-Campo
    • 3
  • Juan Cabezas-Herrera
    • 4
  • Wu Xiaofeng
    • 5
  • José Luis Cenis
    • 2
    Email author
  • José Neptuno Rodríguez-López
    • 3
    Email author
  1. 1.Bioprodin, S.L. Edificio CEEIMCampus Universitario de EspinardoMurciaSpain
  2. 2.IMIDA, La AlbercaMurciaSpain
  3. 3.Department of Biochemistry and Molecular Biology A, School of BiologyUniversity of MurciaMurciaSpain
  4. 4.Research Unit of Clinical Analysis ServiceUniversity Hospital Virgen de la ArrixacaMurciaSpain
  5. 5.Collegue of Animal SciencesZhejiang University, Huajiachi CampusHangzhouChina

Personalised recommendations