Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1819–1833 | Cite as

Value-Added Production of Nisin from Soy Whey

  • Debjani Mitra
  • Anthony L. PomettoIII
  • Samir K. Khanal
  • Bishnu Karki
  • Byron F. Brehm-Stecher
  • J. (Hans) van LeeuwenEmail author
Article

Abstract

The objective of this study was to evaluate the potential of low/negative value soy whey (SW) as an alternative, inexpensive fermentation substrate to culture Lactococcus lactis subsp. lactis for nisin production. Initially, a microtiter plate assay using a Bioscreen C Microbiology Plate Reader was used for rapid optimization of culture conditions. Various treatments were examined in efforts to optimize nisin production from SW, including different methods for SW sterilization, ultrasonication of soy flake slurries for possible nutrient release, comparison of diluted and undiluted SW, and supplementation of SW with nutrients. In subsequent flask-based experiments, dry bacterial mass and nisin yields obtained from SW were 2.18 g/L and 619 mg/L, respectively, as compared to 2.17 g/L and 672 mg/L from a complex medium, de Man–Rogosa–Sharpe broth. Ultrasonication of soybean flake slurries (10% solid content) in water prior to production of SW resulted in ∼2% increase in biomass yields and ∼1% decrease in nisin yields. Nutrient supplementation to SW resulted in ∼3% and ∼7% increase in cell and nisin yields, respectively. This proof-of-concept study demonstrates the potential for use of a low/negative value liquid waste stream from soybean processing for production of a high-value fermentation end product.

Keywords

Soy whey Nisin Value-added production Lactococcus lactis Bioscreen Fermentation 

Notes

Acknowledgement

The authors wish to thank the Iowa Biotechnology Byproducts Consortium and Iowa State University, Institute for Food Safety and Security (IFSS) for financial support. We also extend our thanks to the CCUR at Iowa State University, Adam Pintar for help with statistical analysis, Stephanie Jung, Devin Maurer, Steve Fox, Ilankovan Paraman, Supriyo Das and Carol Ziel for experimental and analytical assistance. The defatted soy flakes were kindly provided by Cargill through CCUR.

References

  1. 1.
    Guerra, N. P., & Pastrana, L. (2003). Letters in Applied Microbiology, 37(1), 51–55.CrossRefGoogle Scholar
  2. 2.
    Parente, E., & Ricciardi, A. (1999). Applied Microbiology Biotechnology, 52, 628–638.CrossRefGoogle Scholar
  3. 3.
    Pongtharangkul, T., & Demirci, A. (2005). Biotechnological Progress, 22(1), 217–224.CrossRefGoogle Scholar
  4. 4.
    Cleveland, J., Chikindas, M., & Montville, T. J. (2002). Industrial Microbiology & Biotechnology, 29, 228–232.CrossRefGoogle Scholar
  5. 5.
    Vuyst, L., & Vandamme, E. J. (1993). Applied Microbiology Biotechnology, 40(1), 17–22.CrossRefGoogle Scholar
  6. 6.
    Arauz, L. J. D., Jozala, A. F., Mazzola, P. G., & Penna, T. C. V. (2009). Trends in Food Science& Technology, 20(3–4), 146–154.CrossRefGoogle Scholar
  7. 7.
    Jozala, A. F., Andrade, M. S., Arauz, L. J., Pessoa, A., Jr., & Penna, T. C. V. (2007). Applied Biochemistry Biotechnology, 136–140, 515–528.CrossRefGoogle Scholar
  8. 8.
    Liu, C., Liu, Y., & Chen, S. (2005). Applied Biochemistry Biotechnology, 121–124, 475–484.CrossRefGoogle Scholar
  9. 9.
    Furuta, Y., Maruoka, N., Nakamura, A., Omori, T., & Sonomoto, K. (2008). Bioscience Bioengineering, 106(4), 393–397.CrossRefGoogle Scholar
  10. 10.
    Vásquez, J. A., González, M. P., & Murado, M. A. (2006). Bioresource Technology, 97, 605–613.CrossRefGoogle Scholar
  11. 11.
    Guerra, N. P., Agrasar, A. T., Macías, C. L., Bernárdez, P. F., & Castro, L. P. (2007). Food Engineering, 82, 103–113.CrossRefGoogle Scholar
  12. 12.
    Davidson, P. M., & Branen, A. L. (2005). Food antimicrobials – An introduction (3rd ed., p. 2). New York: CRC.Google Scholar
  13. 13.
    Smith, A. K., Nash, A. M., Eldridge, A. C., & Wolf, W. J. (1962). Agricultural & Food Chemistry, 10(4), 302–304.CrossRefGoogle Scholar
  14. 14.
    Falanghe, H., Smith, A. K., & Rackis, J. J. (1964). Applied Microbiology, 12(4), 330–334.Google Scholar
  15. 15.
    Wolf, C. E., & Gibbons, W. R. (1996). Applied Bacteriology, 80(4), 453–457.Google Scholar
  16. 16.
    Rackis, J. J., Honig, D. H., Sessa, D. J., & Cavins, J. F. (1971). Food Science, 36(1), 10–13.CrossRefGoogle Scholar
  17. 17.
    Snyder, H. E., & Kwon, T. W. (1987). Soybean utilization (p. 59). New York: Van Nostrand Reinhold.Google Scholar
  18. 18.
    Smith, A. K., Schubert, E. N., & Belter, P. A. (1954). American Oil Chemical Society, 32, 274–278.CrossRefGoogle Scholar
  19. 19.
    Deak, N. A., & Johnson, L. A. (2007). American Oil Chemical Society, 84, 259–268.CrossRefGoogle Scholar
  20. 20.
    Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of sea water analysis. Bulletin–Fisheries Research Board of Canada.Google Scholar
  21. 21.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. S. (1951). Biological Chemistry, 193, 265–275.Google Scholar
  22. 22.
    Tramer, J., & Fowler, G. G. (1964). Science of Food &Agriculture, 15, 522–528.CrossRefGoogle Scholar
  23. 23.
    Mocquot, G., & Lefebvre, E. (1956). Applied Bacteriology, 19, 322–323.Google Scholar
  24. 24.
    Karki, B., Lamsal, B. P., Jung, S., van Leeuwen, H., Grewell, D., Pometto, A. L., et al. (2009). Food Engineering, 96(2), 270–278.CrossRefGoogle Scholar
  25. 25.
    Karki, B., Lamsal, B. P., Grewell, D., Pometto, A. L., Van Leeuwen, J., Khanal, S. K., et al. (2009). American Chemical Society, 86(10), 1021–1028.CrossRefGoogle Scholar
  26. 26.
    Barry, A. L., Garcia, F., & Thrupp, L. D. (1970). American Journal of Clinical Pathology, 53(2), 149–158.Google Scholar
  27. 27.
    Diggle, P. J., Liang, K. Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Oxford: Oxford University Press.Google Scholar
  28. 28.
    Daniel, K. T. (2005). The whole soy story, the dark side of America’s favorite health food, CCN (pp. 38–39). Washington DC: New Trends.Google Scholar
  29. 29.
    Rackis, J. J. (1974). American Oil Chemical Society, 51, 161A–170A.CrossRefGoogle Scholar
  30. 30.
    Liu, C., Liu, Y., Liao, W., Wen, Z., & Chen, S. (2004). Applied Biochemistry Biotechnology, 114(1–3), 627–638.CrossRefGoogle Scholar
  31. 31.
    Matsusaki, H., Endo, N., Sonomoto, K., & Ishizaki, A. (1996). Applied Microbiology Biotechnology, 45, 36–40.CrossRefGoogle Scholar
  32. 32.
    De Vuyst, L., De Poorter, G., & Vandamme, E. J. (1989). In P. L. Yu (Ed.), Fermentation technologies: industrial applications (pp. 166–172). London: Elsevier.Google Scholar
  33. 33.
    Hurst, A. (1966). General Microbiology, 44, 209–220.Google Scholar
  34. 34.
    Guerra, N. P., Rua, M. L., & Pastrana, L. (2001). International Journal of Food Microbiology, 70, 267–281.CrossRefGoogle Scholar
  35. 35.
    Guerra, N. P., & Pastrana, L. (2002). Biotechnology Applied Biochemistry, 36, 119–125.CrossRefGoogle Scholar
  36. 36.
    Guerra, N. P., & Pastrana, L. (2002). Process Biochemistry, 37, 1005–1015.CrossRefGoogle Scholar
  37. 37.
    Yang, R., & Ray, B. (1994). Food Microbiology, 11, 281–291.CrossRefGoogle Scholar
  38. 38.
    Guerra, N. P., & Pastrana, L. (2001). Biotechnology Letters, 23, 609–612.CrossRefGoogle Scholar
  39. 39.
    Brooks, J. R., & Morr, C. V. (1984). Agricultural Food Chemistry, 32(3), 672–674.CrossRefGoogle Scholar
  40. 40.
    LeBlanc, J. G., Silvestroni, A., Connes, C., Juillard, V., de Giori, G. S., Piard, J. C., et al. (2004). Reduction of non-digestible oligosaccharides in soymilk: Application of engineered lactic acid bacteria that produce a-galactosidase. Genetics Molecular Research, 3(3), 432–440.Google Scholar
  41. 41.
    Zarrabal, O. C., Hipolito, C. N., Bujang, K. P., & Ishizaki, A. (2009). Industrial Microbiology Biotechnology, 36, 409–415.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Debjani Mitra
    • 1
    • 2
    • 3
  • Anthony L. PomettoIII
    • 5
  • Samir K. Khanal
    • 6
  • Bishnu Karki
    • 2
  • Byron F. Brehm-Stecher
    • 2
  • J. (Hans) van Leeuwen
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Biorenewable Resources and Technology ProgramIowa State UniversityAmesUSA
  2. 2.Department of Food Science and Human NutritionIowa State UniversityAmesUSA
  3. 3.Department of Civil, Construction and Environmental EngineeringIowa State UniversityAmesUSA
  4. 4.Department of Agricultural and Biosystem EngineeringIowa State UniversityAmesUSA
  5. 5.Department of Food Science and Human NutritionClemson UniversityClemsonUSA
  6. 6.Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at MānoaHonoluluUSA

Personalised recommendations