Skip to main content
Log in

Value-Added Production of Nisin from Soy Whey

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the potential of low/negative value soy whey (SW) as an alternative, inexpensive fermentation substrate to culture Lactococcus lactis subsp. lactis for nisin production. Initially, a microtiter plate assay using a Bioscreen C Microbiology Plate Reader was used for rapid optimization of culture conditions. Various treatments were examined in efforts to optimize nisin production from SW, including different methods for SW sterilization, ultrasonication of soy flake slurries for possible nutrient release, comparison of diluted and undiluted SW, and supplementation of SW with nutrients. In subsequent flask-based experiments, dry bacterial mass and nisin yields obtained from SW were 2.18 g/L and 619 mg/L, respectively, as compared to 2.17 g/L and 672 mg/L from a complex medium, de Man–Rogosa–Sharpe broth. Ultrasonication of soybean flake slurries (10% solid content) in water prior to production of SW resulted in ∼2% increase in biomass yields and ∼1% decrease in nisin yields. Nutrient supplementation to SW resulted in ∼3% and ∼7% increase in cell and nisin yields, respectively. This proof-of-concept study demonstrates the potential for use of a low/negative value liquid waste stream from soybean processing for production of a high-value fermentation end product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guerra, N. P., & Pastrana, L. (2003). Letters in Applied Microbiology, 37(1), 51–55.

    Article  CAS  Google Scholar 

  2. Parente, E., & Ricciardi, A. (1999). Applied Microbiology Biotechnology, 52, 628–638.

    Article  CAS  Google Scholar 

  3. Pongtharangkul, T., & Demirci, A. (2005). Biotechnological Progress, 22(1), 217–224.

    Article  Google Scholar 

  4. Cleveland, J., Chikindas, M., & Montville, T. J. (2002). Industrial Microbiology & Biotechnology, 29, 228–232.

    Article  CAS  Google Scholar 

  5. Vuyst, L., & Vandamme, E. J. (1993). Applied Microbiology Biotechnology, 40(1), 17–22.

    Article  Google Scholar 

  6. Arauz, L. J. D., Jozala, A. F., Mazzola, P. G., & Penna, T. C. V. (2009). Trends in Food Science& Technology, 20(3–4), 146–154.

    Article  Google Scholar 

  7. Jozala, A. F., Andrade, M. S., Arauz, L. J., Pessoa, A., Jr., & Penna, T. C. V. (2007). Applied Biochemistry Biotechnology, 136–140, 515–528.

    Article  Google Scholar 

  8. Liu, C., Liu, Y., & Chen, S. (2005). Applied Biochemistry Biotechnology, 121–124, 475–484.

    Article  Google Scholar 

  9. Furuta, Y., Maruoka, N., Nakamura, A., Omori, T., & Sonomoto, K. (2008). Bioscience Bioengineering, 106(4), 393–397.

    Article  CAS  Google Scholar 

  10. Vásquez, J. A., González, M. P., & Murado, M. A. (2006). Bioresource Technology, 97, 605–613.

    Article  Google Scholar 

  11. Guerra, N. P., Agrasar, A. T., Macías, C. L., Bernárdez, P. F., & Castro, L. P. (2007). Food Engineering, 82, 103–113.

    Article  CAS  Google Scholar 

  12. Davidson, P. M., & Branen, A. L. (2005). Food antimicrobials – An introduction (3rd ed., p. 2). New York: CRC.

    Google Scholar 

  13. Smith, A. K., Nash, A. M., Eldridge, A. C., & Wolf, W. J. (1962). Agricultural & Food Chemistry, 10(4), 302–304.

    Article  Google Scholar 

  14. Falanghe, H., Smith, A. K., & Rackis, J. J. (1964). Applied Microbiology, 12(4), 330–334.

    CAS  Google Scholar 

  15. Wolf, C. E., & Gibbons, W. R. (1996). Applied Bacteriology, 80(4), 453–457.

    CAS  Google Scholar 

  16. Rackis, J. J., Honig, D. H., Sessa, D. J., & Cavins, J. F. (1971). Food Science, 36(1), 10–13.

    Article  CAS  Google Scholar 

  17. Snyder, H. E., & Kwon, T. W. (1987). Soybean utilization (p. 59). New York: Van Nostrand Reinhold.

    Google Scholar 

  18. Smith, A. K., Schubert, E. N., & Belter, P. A. (1954). American Oil Chemical Society, 32, 274–278.

    Article  Google Scholar 

  19. Deak, N. A., & Johnson, L. A. (2007). American Oil Chemical Society, 84, 259–268.

    Article  CAS  Google Scholar 

  20. Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of sea water analysis. Bulletin–Fisheries Research Board of Canada.

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. S. (1951). Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Tramer, J., & Fowler, G. G. (1964). Science of Food &Agriculture, 15, 522–528.

    Article  CAS  Google Scholar 

  23. Mocquot, G., & Lefebvre, E. (1956). Applied Bacteriology, 19, 322–323.

    Google Scholar 

  24. Karki, B., Lamsal, B. P., Jung, S., van Leeuwen, H., Grewell, D., Pometto, A. L., et al. (2009). Food Engineering, 96(2), 270–278.

    Article  Google Scholar 

  25. Karki, B., Lamsal, B. P., Grewell, D., Pometto, A. L., Van Leeuwen, J., Khanal, S. K., et al. (2009). American Chemical Society, 86(10), 1021–1028.

    Article  CAS  Google Scholar 

  26. Barry, A. L., Garcia, F., & Thrupp, L. D. (1970). American Journal of Clinical Pathology, 53(2), 149–158.

    CAS  Google Scholar 

  27. Diggle, P. J., Liang, K. Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Oxford: Oxford University Press.

    Google Scholar 

  28. Daniel, K. T. (2005). The whole soy story, the dark side of America’s favorite health food, CCN (pp. 38–39). Washington DC: New Trends.

    Google Scholar 

  29. Rackis, J. J. (1974). American Oil Chemical Society, 51, 161A–170A.

    Article  CAS  Google Scholar 

  30. Liu, C., Liu, Y., Liao, W., Wen, Z., & Chen, S. (2004). Applied Biochemistry Biotechnology, 114(1–3), 627–638.

    Article  Google Scholar 

  31. Matsusaki, H., Endo, N., Sonomoto, K., & Ishizaki, A. (1996). Applied Microbiology Biotechnology, 45, 36–40.

    Article  CAS  Google Scholar 

  32. De Vuyst, L., De Poorter, G., & Vandamme, E. J. (1989). In P. L. Yu (Ed.), Fermentation technologies: industrial applications (pp. 166–172). London: Elsevier.

    Google Scholar 

  33. Hurst, A. (1966). General Microbiology, 44, 209–220.

    CAS  Google Scholar 

  34. Guerra, N. P., Rua, M. L., & Pastrana, L. (2001). International Journal of Food Microbiology, 70, 267–281.

    Article  CAS  Google Scholar 

  35. Guerra, N. P., & Pastrana, L. (2002). Biotechnology Applied Biochemistry, 36, 119–125.

    Article  CAS  Google Scholar 

  36. Guerra, N. P., & Pastrana, L. (2002). Process Biochemistry, 37, 1005–1015.

    Article  CAS  Google Scholar 

  37. Yang, R., & Ray, B. (1994). Food Microbiology, 11, 281–291.

    Article  Google Scholar 

  38. Guerra, N. P., & Pastrana, L. (2001). Biotechnology Letters, 23, 609–612.

    Article  CAS  Google Scholar 

  39. Brooks, J. R., & Morr, C. V. (1984). Agricultural Food Chemistry, 32(3), 672–674.

    Article  CAS  Google Scholar 

  40. LeBlanc, J. G., Silvestroni, A., Connes, C., Juillard, V., de Giori, G. S., Piard, J. C., et al. (2004). Reduction of non-digestible oligosaccharides in soymilk: Application of engineered lactic acid bacteria that produce a-galactosidase. Genetics Molecular Research, 3(3), 432–440.

    CAS  Google Scholar 

  41. Zarrabal, O. C., Hipolito, C. N., Bujang, K. P., & Ishizaki, A. (2009). Industrial Microbiology Biotechnology, 36, 409–415.

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Iowa Biotechnology Byproducts Consortium and Iowa State University, Institute for Food Safety and Security (IFSS) for financial support. We also extend our thanks to the CCUR at Iowa State University, Adam Pintar for help with statistical analysis, Stephanie Jung, Devin Maurer, Steve Fox, Ilankovan Paraman, Supriyo Das and Carol Ziel for experimental and analytical assistance. The defatted soy flakes were kindly provided by Cargill through CCUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. (Hans) van Leeuwen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, D., Pometto, A.L., Khanal, S.K. et al. Value-Added Production of Nisin from Soy Whey. Appl Biochem Biotechnol 162, 1819–1833 (2010). https://doi.org/10.1007/s12010-010-8951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8951-y

Keywords

Navigation